Name:				
	 	 	 	_

Chapter 3 Part 2 Notes

STUDENT COPY

Final Mark:

/8

Marks → Requirement Ψ	2	1	0
Notes Present	All notes present	Most notes present	Less than half of notes present
Organization / Neatness	Notes in chronological order, name and date on everything	Almost all notes in chronological order, name and date on most pages	Mostly out of order, name and date often missing
Questions	Question column completed on all notes, higher level questions attempted	Most question columns complete, some higher level questions	Less than half of the question columns complete
Main Ideas and Reflections	All 'main ideas' and 'reflections' complete with care in notes	Most 'main ideas' and 'reflections' complete in notes	Less than half of the 'main ideas' and 'reflections' complete

^{*}If your mark does not total up to at least 4 out of 8, your notes are INCOMPLETE and must be fixed up as soon as possible and re-evaluated.

TEACHER COPY

Final Mark:

/8

Marks → Requirement ↓	2	1	0
Notes Present	All notes present	Most notes present	Less than half of notes present
Organization / Neatness	Notes in chronological order, name and date on everything	Almost all notes in chronological order, name and date on most pages	Mostly out of order, name and date often missing
Questions	Question column completed on all notes, higher level questions attempted	Most question columns complete, some higher level questions	Less than half of the question columns complete
Main Ideas and Reflections	All 'main ideas' and 'reflections' complete with care in notes	Most 'main ideas' and 'reflections' complete in notes	Less than half of the 'main ideas' and 'reflections' complete

How do we use algebra tiles?

Algebra tiles: (FLIP OVER FOR NEW COLOUR!)

Model: (x + 1)(x + 2)

Make the LENGTH of the rectangle x + 2 and the WIDTH of the rectangle x + 1. Fill in the rectangle, and see how many pieces (and what kinds) you need to do so.

Total Area is $x^2 + 3x + 2$

Ex3) Model the following products using algebra tiles: (Sketch!)

a)
$$(x+4)(x+1)$$

b)
$$(x+3)(x-2)$$

Reflection: How (if at all) do the algebra tiles help you picture the multiplication?

3.3 - Common Factors of a Polynomial

Name: Date:

Goal: to determine the factors of a polynomial by identifying the GCF

Toolkit:

- Finding the GCF
- Distributive Property

Main Ideas:

Factor a binomial using the GCF

Ex 1) Factor the binomial: 3g +6

Ex 2) Factor the binomial: $-8y + 16y^2$

Factor a trinomial using the GCF

Ex 3) Factor the trinomial: $3x^2 + 12x - 6$

Ex 4) Factor the trinomial: $6-12z+18z^2$

Factor polynomials in more than one variable

Ex 5) Factor the trinomial: $-20c^4d - 30c^3d^2 - 25cd$

Reflection: How are the processes of factoring and expanding related?

Name:

Date:

Goal: to use models and algebraic strategies to multiply binomials and to factor trinomials.

Toolkit:

Factoring

Main Ideas:

Definitions:

Descending order: the terms are written in order from the term with the greatest exponent to the term with the least exponent Ascending order: the terms are written in order from the term with the least exponent to the term with the greatest exponent

Steps for Factoring a Trinomial in the form: x^2+bx+c , where a=1

With any factoring question, first check to see if you can factor out a GCF from ALL terms!

- Step 1: If needed, re-order the terms in descending powers of the variable (biggest to smallest)
- Step 2: Find two numbers that multiply to equal the c term and add to equal the b term (add to the middle, multiply to the end)
- Step 3: Factor into two binomials using the numbers from step 2, with the variable from the question placed first in each bracket

Multiplying two binomials

Ex 1) Expand and Simplify: (x-1)(x-7)

use FOIL

Remember: expanding and factoring are opposite operations....they UNDO each other!

Factoring a trinomial in the form $x^2 + bx + c$

Ex 2) Factor the trinomial: $x^2 - 8x + 7$

....we should end up with (x-1)(x-7)!

Notice that a (the number in front of the x^2) will always end up being 1 in these questions!

Ex 3) Factor: $a^2 - 2a - 8$

Factoring a trinomial written in ascending order

Ex 4) Factor: $-30 + 7m + m^2$

Ex 5) Factor: $-5h^2 - 20h + 60$

Always check to see if there is a GCF you can factor out first! IF there is a negative number in front of the x^2 , factor out the negative as well.

Ex 6) Factor: $-12 - 9g + 3g^2$

Ex 7) Factor: $2x^2 - 6x - 80$

Ex 8) Factor: $x^2 + x - 2$

Name: Date:

Goal: to extend the strategies for multiplying binomials and factoring trinomials

Toolkit:

Main Ideas:

- Multiplying binomials
- Factoring

Factoring by Decomposition: (needed when the $a \ne 1$ in $ax^2 + bx + c$)

With any factoring question, first check to see if you can factor out a GCF from ALL terms!

- Step 1: If needed, re-order the terms in descending powers of the variable (biggest to smallest)
- Step 2: Find two numbers that multiply to equal ac and add to equal b (add to the middle, multiply to product of first and last)
- Step 3: Re-write the expression but split or decompose the b term using the two numbers from step 2.
- Step 4: Now the expression has FOUR terms, so we can factor by grouping the first two terms and the last two terms.
- Step 5: When fully factored, the remaining two brackets <u>need to be identical!</u> These are now a common factor, and can be factored out, and what is left becomes the components of the second bracket.

Factor by Grouping

Ex. 1) Factor the following by grouping:

a)
$$3x^2 - 3x - 2x + 2$$

b)
$$2x^2 - 4x + x - 2$$

Factoring a trinomial of the form $ax^2 + bx + c$

Ex 2) Factor the trinomial: $4g^2 + 11g + 6$ by decomposition

notice that a (the number in front of x^2) is not = 1 in any of these questions!

Ex 3) Factor the trinomial: $-7m - 10 + 6m^2$

Ex 4) Factor: $8p^2 - 18p - 5$

Ex 5) Factor: $6x^2 + 14x - 12$

If you can make a trinomial have a=1 by removing a G.C.F., then you can use "the simple way"!

Ex 6) Factor: $3x^2 + 6x - 9$

Ex 7) Find an integer to replace \square so that the trinomial can be factored. How many integers can you find?

 $4x^2 + \square x + 9$

Reflection: Will decomposition work if the a value of a trinomial is 1? Do an example to prove this.

3.8 - Factoring Special Polynomials

Name: Date:

Goal: to investigate some special factoring patterns

Toolkit:

Main Ideas:

- Finding a square root
- Finding GCF
- Multiplying Polynomials

Definitions:

Perfect Square Trinomial: a trinomial of the form $a^2 + 2ab + b^2$; it can be factored as $(a + b)^2$ or of the form $a^2 - 2ab + b^2$; it can be factored as $(a - b)^2$ Difference of Squares: a binomial of the form $a^2 - b^2$; it can factored as (a - b)(a + b)

Draw an area model of a square with side length a + b to represent a perfect square trinomial.

Factoring a perfect square trinomial

Ex 1) Factor the trinomial: $36x^2 + 12x + 1$

Factoring trinomials in two variables

Ex 2) Factor the trinomial: $5c^2 - 13cd + 6d^2$

Factoring a Difference of Squares Ex 3) Factor the binomial: $81m^2 - 49$

Ex 4) Factor the binomial: $162v^2 - 2w^4$

Ex 5) Factor the binomial: $\frac{x^2}{25} - \frac{y^2}{4}$

Name: Date:

FACTORING FLOW CHART

STEP 1 Take out COMMON FACTORS (GCF)

STEP 2 Ask: How many terms are there?

Probably a difference of squares:

*You need subtraction ("difference") and squares

$$a^2 - b^2 = (a + b)(a - b)$$

Diff of Sqs = Conjugates

Example:

$$4x^2 - 9 =$$

$$(2x)^2 - (3)^2 =$$

(2x + 3)(2x - 3)

THREE

Factoring trinomials: $ax^2 + bx + c$

Type 1: a = 1Example: $x^2 - 3x + 2$

Ask: what ADDS to "b" (here -3) & MULTIPLIES to "c" (here +2)

Answer: -1, -2

Write factors (x-1)(x-2)

Type 2: $a \neq 1$ Example: $2x^2 - x - 1$

Ask: what ADDS to "b" (here -1) & MULTIPLIES to "ac" (here 2(-1)= -2)

Answer: -2, 1 Use these to split the middle term into two separate terms: $2x^2 - x - 1$

$$2x^2 - x - 1$$

 $2x^2 - 2x + 1x - 1$

Factor using grouping: See next column ©

FOUR

Probably grouping:

Example:

$$2x^2 - 2x + 1x - 1$$

Group the first two terms together, and the last two terms together:

$$[2x^2 - 2x] + [1x - 1]$$

Factor common factors out of each group:

$$2x(x-1) + 1(x-1)$$

You should have two matching brackets. Factor them out:

$$(x-1)(2x+1)$$