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1 — Algorithms

Learning Objectives

After studying this chapter, a student should be able to:

• describe what an algorithm is
• provide examples of algorithms
• distinguish between actions and control statements in algorithms
• identify appropriate algorithms for humans versus computers
• distinguish between problems and algorithms

1.1 Algorithms
An algorithm is an ordered list of actions that describe how to perform a task or solve a problem.
Algorithms are an important concept in the study of computer science, but they are broadly applicable.
A recipe for making bread is an algorithm, even though making bread has nothing to do with
computers. The recipe describes what actions you must take, and the order in which you must take
them, if you want to end up with something that looks and tastes like bread. If you deviate from the
algorithm, there’s a good chance you end up with something quite un-bread-like. Other examples of
algorithms are:

• instructions for assembling a bookshelf
• steps to operate a coffee maker
• a list of things to do in case of a fire

One note of caution, however: not everything that looks like a list or or a set of instructions meets
the standard for being an algorithm. For example, a recipe that consists only of a list of ingredients
is not an algorithm, because it does not specify what should be done with those ingredients. Another
way that a set of instructions can fall short of being an algorithm is if the actions are not explicitly
ordered. There are many real-world problems that have subtasks that can be performed in any order.
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For instance, if you are assembling a table, at some point you have to attach each of the four legs,
but which leg you start with doesn’t matter. Humans are often pretty good at figuring out when this
is the case, and therefore might omit an ordering; but if they do, then the result is not an algorithm.
Note that this isn’t a bad thing! Recipes that list only ingredients and instructions that leave out
irrelevant ordering can be perfectly useful. They’re just not algorithms.

1.2 An Algorithm in Detail
Let’s take a look at a complete, concrete example of an algorithm. The following is an algorithm to
make ramen noodles:⌥ ⌅
Algorithm MakeRamen:

boil water
add noodles to water
wait 6 minutes
drain the noodles
stir in contents of flavour packet
place cooked noodles in bowl⌃ ⇧
This algorithm consists of six actions to solve the problem of making ramen noodles. The actions
are taken in the order given, and the end result, or output, of the algorithm is a prepared bowl of
steaming hot noodles, ready to eat. The important thing to remember about algorithms is that the
given actions must be taken in the given order, otherwise we are not following the algorithm and
there is no guarantee that we will get the desired output.

1.3 Actions in Algorithms
We have said that an algorithm is made up of a sequence of actions, so we should say a little more
on what an action actually is. For our purposes, an action should:

• be declarative: it is a command to do something
• be feasible: the algorithm’s recipient has the ability to perform it
• be self-explanatory: the algorithm’s recipient knows how to perform it without further elabora-

tion

From the criteria above, it should be apparent that an algorithm’s recipient - that is, the person
or thing that we expect will be following the algorithm - is of critical importance. For example,
raise your right hand is a perfectly reasonable action for most adult humans. However, for
a toddler who does not yet know right from left, it is not an appropriate action, because it is not
self-explanatory. For a computer, it is not even a feasible action, since computers do not typically
have hands at all!

1.4 Control Flow of Algorithms
Algorithms can contain more than just actions to take; they can also contain information on when to
perform a given action, or even how many times to perform an action. Consider the following (very
simple) algorithm for tightening a bolt.
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⌥ ⌅
Algorithm TightenBolt:

clamp wrench to bolt
while the bolt is not tight:

rotate the wrench clockwise
unclamp and put away wrench⌃ ⇧

Notice that the line while the bolt is not tight is not in fact an instruction to do some-
thing; rather, it is indicating the condition under which we should continue to perform the action
on the following line, namely, rotating the wrench. We will call lines such as the former a control
statement. Control statements are very powerful, for they allow us to create algorithms that take only
a few lines of text to write yet can describe complex behaviour.

Notice also that in the algorithm above, the line rotate the wrench clockwise is indented.
This is to visually indicate that it is this action that should be repeated so long as the bolt is not
tight - it is the line to which the preceding control statement applies. By contrast, the line unclamp
and put away wrench is not indented. This is to show that this action should only be done once
(when we are done tightening the bolt), and that this action has nothing to do with the earlier control
statement. With algorithms written for humans, this sort of thing is often obvious from context;
for example, a human intuitively knows that putting away a wrench multiple times would be rather
silly. Once we start dealing with computers, however, we have to be very precise about the scope of
control statements so that the computer knows which action(s) are covered by the control statement
and which are not.

We can, of course, have multiple statements under the scope of the same control statement, as
shown in the following example:⌥ ⌅
Algorithm MakeHamburgers:

read customer ’s order
check how many hamburgers are required
while more hamburgers are needed:

slice hamburger bun
spread ketchup on bun
put meat on bun
put hamburger in bag

give bag of hamburgers to customer⌃ ⇧
Here we have multiple statements at the same level of indentation and subject to the same control

statement. We call a collection of statements like this a block, and it’s the indentation that tells us
which statements belong in the block. As a result, when reading algorithms, we should be aware that
indentation is probably not arbitrary or accidental, but rather conveys important meaning.

1.5 Methods of Writing Algorithms
Algorithms can be written in different forms. So far we’ve seen a few algorithms that are written in
words. Algorithms written in words are called pseudocode. Pseudocode can look like the “code” we
would write in a programming language, but is much more flexible because its syntax and form is
not rigidly specified like that of a programming language.
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Figure 1.1: Examples of algorithms written using pictures. Left: LEGO instructions; right: aircraft
safety procedures card.

The LEGO instructions and the airline safety card pictured in Figure 1.1 are examples of
algorithms written using pictures. They indicate, in a step-by-step manner, what to do to complete
the tasks of building the LEGO model and escape the aircraft in an emergency.

Words and pictures are normally how we write algorithms that are to be understood and/or carried
out by humans. When we write algorithms for computers we have to use a language that a computer
can understand. Computer programs are written in a programming language. A programming
language provides instructions to the computer in a way that it can both understand them and carry
them out unambiguously. For this reason, programming languages are more restrictive in the syntax
and style we can use to write algorithms. Many hundreds of programming languages exist, but for
this course, we will just be learning one (a language called Python).

If a computer program doesn’t do what its programmer wants it to, it’s not the computer’s fault!
The computer can only do exactly what the program tells it to do whether or not it is what the
programmer intended. This is why it is vital that a programmer understand the algorithm that they
are trying to write. If a programmer doesn’t understand the algorithm, the chance that they’ll be
able to tell the computer how to perform the algorithm correctly is slim to none. This is why it is
advantageous for programmers to write algorithms using pseudocode first. It helps them to ensure
they understand what they are about to program without having to worry about the details of the
programming language syntax. Once understanding is reached via pseudocode, a programmer is
much more easily able to get the details right when writing the algorithm in the precise syntax
required by the programming language. Moreover, they are ready to implement the algorithm in any
programming language that they know!

1.6 Problems vs. Algorithms
We’ll conclude this chapter by making a distinction between problems and algorithms. A problem is
a task to be carried out. An algorithm is a specific set of steps for how to carry out a task. A problem
may have more than one algorithm for solving it. A given algorithm, however, solves only one
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problem. This might seem like an easy distinction at this point, but during an introductory course
like this one, it can be easy to forget. Because this is a course for novices, much of the work you will
be given to practice your programming basics will be so simple that the problem statement and the
algorithm for solving it are more or less one and the same. It’s therefore important to remember that
for most real-world problems, this is rarely the case.

As an example, let’s consider the problem of picking up a pile of playing cards that you were just
dealt, and putting them in rank-order. Some people pick up their cards one at a time and place each
card into their hand at the correct position as they do so. Other people pick up all of the cards at once,
find the smallest one and move that card to the left-most position, then find the next smallest and put
it next to the smallest card, and so on. These are two different algorithms for solving the problem of
putting a hand of cards in order. Both achieve the same result, but the algorithms themselves are
fundamentally different processes.
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2 — Abstraction

Learning Objectives

After studying this chapter, a student should be able to:

• define abstraction, refinement and encapsulation
• write algorithms at different levels of abstraction
• describe how input and output relate to encapsulation
• employ encapsulation to decompose algorithms written in pseudocode

2.1 Abstraction
Abstraction is the process of strategically removing details that are not relevant with regard to a
particular goal. Abstraction, like the algorithms we discussed in the previous chapter, can be found
everywhere, not just in computer science. A building floor plan is an abstraction: it omits details
such as the materials the walls are made of and the location of wires and plumbing because these
things are not relevant to the purpose of the floor plan, which is to help people navigate the building.

In computer science, the ability to write an algorithm at different levels of abstraction is a key
skill - perhaps even the single most important skill. To illustrate this concept, let’s look again at our
MakeRamen algorithm from Chapter 1.⌥ ⌅
Algorithm MakeRamen:

boil water
add noodles to water
wait 6 minutes
drain the noodles
stir in contents of flavour packet
place cooked noodles in bowl⌃ ⇧
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The first action in this pseudocode algorithm is boil water. This is a great example of abstraction,
because the action boil water glosses over all of the details of how to boil water. For humans,
these details are pretty unimportant, because almost all adult humans know how to boil water. But
imagine that this algorithm has to be carried out by a humanoid cooking robot. The robot does not
intuitively know how to boil water. The action boil water is too abstract for it. It needs more
details.

2.2 Refinement
Refinement is the process of adding more details to an algorithm. It is the inverse process to
abstraction. For example, we might refine the boil water action by replacing it with a sequence of
actions (shown in red text) that describe how to boil water in more detail:⌥ ⌅
Algorithm MakeRamen:

get pot from cupboard
place pot under faucet
add water to pot
place pot on stove
turn on burner
wait until water boils
add noodles to water
wait 6 minutes
drain the noodles
stir in contents of flavour packet
place cooked noodles in bowl⌃ ⇧

Listing 2.1: MakeRamen algorithm with refinement of the boil water action.

Each of these new actions describes an action that partially carries out the original boil water
action. But, depending on the sophistication of our cooking robot, even these actions may not be
detailed enough for it to carry out the task. At some point, the robot needs to know exactly where,
and for how long to position its legs and arms to carry out these actions. This would require that
we further refine the actions place pot under faucet, add water to pot, etc. to the level
of detail where we tell the robot exactly where and how to move its limbs by replacing each of
these actions with sequences of even more detailed actions. This is called stepwise refinement. We
repeatedly replace actions that are too abstract with a sequence of less abstract, more detailed actions
until we reach a level of detail such that the actions are both feasible and self-explanatory for the
algorithm’s audience (in this case, our cooking robot).

The ability to think at different levels of abstraction and move between them is critical to success
as a programmer and a computer scientist. We abstract away details when they are not important, and
refine abstractions later when we are ready for the details. It’s not an easy skill and it takes practice.

2.3 Encapsulation
Encapsulation is a process in which several related actions are grouped together and given a name. It
is a tool that helps us break up tasks and temprorarily hide detail, thus enabling effective abstraction.
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Without good encapsulation, it can be hard to grasp the high-level structure of an algorithm without
getting lost in the details. For example, consider the following algorithm for making lunch:⌥ ⌅
Algorithm MakeLunch:

boil water
add noodles to water
wait 6 minutes
drain the noodles
stir in contents of flavour packet
place cooked noodles in bowl
open fridge
get milk carton from fridge
pour milk in glass
return milk carton to fridge
open cookie jar
put cookie on plate⌃ ⇧

Listing 2.2: Making lunch without encapsulation

It should be apparent that the first several actions in this algorithm come directly from our
MakeRamen algorithm that we’ve seen before. Furthermore, the steps after making the ramen, while
important to a delicious and low cost student lunch, have nothing to do with making ramen. In
other words, there is a natural break between high-level concepts in this algorithm. Employing
encapsulation would allow us to see the overall organization of this lunch-making algorithm much
more clearly, as follows:⌥ ⌅
Algorithm MakeLunch:

MakeRamen
PourMilk
GetCookie⌃ ⇧

Listing 2.3: Making lunch with the details encapsulated

If you’ve been paying particularly close attention, you may have noticed that we’ve always given
names to all of our sample algorithms so far. This hasn’t been accidental - now we can use that name
to refer to the entire algorithm. In essence, we can think of the MakeLunch algorithm as consisting
of three other encapsulated algorithms. The first of these is the MakeRamen algorithm that we’ve
seen many times. The PourMilk and GetCookie algorithms are constructed simply by taking the
details from our original MakeLunch algorithm and encapsulating them with their own names.⌥ ⌅
Algorithm PourMilk:

get milk carton from fridge
pour milk in glass
return milk carton to fridge⌃ ⇧

⌥ ⌅
Algorithm GetCookie:

open cookie jar
put cookie on plate⌃ ⇧

Encapsulation can be useful when writing algorithms of any length, but it’s especially crucial for
computer programs. Large-scale software can consist of thousands or even millions of lines of code.



20 Abstraction

There’s no way anybody could make sense of it all if the code wasn’t encapsulated to break it up into
manageable chunks.

2.3.1 Input and Output
An algorithm’s input specifies resources or information that need to exist in advance before the
algorithm can be carried out. An algorithm’s output specifies the results that must have occurred
by the time the algorithm is finished. Input and output are crucial to the concept of encapsulation
because together they define the boundaries of the encapsulated algorithm. You can think of this
process as something like a business contract: the encapsulated algorithm says “if you give me these
things (the inputs), then I will make for you these other things (the outputs)”.

Often, we include these inputs and outputs as part of the description of an algorithm, right after
the algorithm’s name. For our running ramen example1, this would look as follows:⌥ ⌅
Algorithm MakeRamen:
Inputs: One ramen package
Output: Hot bowl of cooked ramen

boil water
add noodles to water
wait 6 minutes
drain the noodles
stir in contents of flavour packet
place cooked noodles in bowl⌃ ⇧

Notice that the algorithm says nothing whatsoever about how the initial package of ramen was
acquired. From the perspective of the algorithm, how the ramen package was obtained doesn’t
matter. As long as you had such a package available, you could follow the algorithm to cook the
ramen. Notice too that the algorithm might also produce things that weren’t specified by the output.
In this case, the algorithm will very likely result in a dirty pot in addition to the hot bowl of noodles.
The output is not supposed to be an exhaustive list of everything that will result from following
the algorithm. Instead, it is supposed to list the goal or purpose of following the algorithm. Any
other results are incidental. In other words, the input and output are defined by the problem that the
algorithm is solving, not by the algorithm itself.

In fact, it light of this last insight, we can present the following (very abstract) algorithm for
writing algorithms!⌥ ⌅
Algorithm WriteAlgorithm:

identify the problem
define the solution to the problem (output)
decide starting conditions of the problem (inputs)
design an algorithm that produces the output given the input(s)⌃ ⇧

Listing 2.4: A correct algorithm for writing algorithms

Contrast this with the following algorithm, which is a much worse way of designing algorithms.
We highly advise against it.

1Hopefully, you are not getting sick of ramen by now. As a student, you may have to get used to it.
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⌥ ⌅
Algorithm WriteAlgorithm:

identify the problem
write an algorithm that has something to do with the problem
figure out what the algorithm does: call these outputs
figure out what the algorithm needs: call these inputs⌃ ⇧

Listing 2.5: A less effective algorithm for writing algorithms

2.4 Why Abstraction is Important
With regard to how computers work, you may have heard something along the lines of “computers
only really understand 1s and 0s”. This is more or less true. However, very few, if any, modern
computer scientists write their computer code as enormous streams of 1s and 0s. Instead, we mostly
write code in a so-called “high-level” language, like the Python language you will be learning in this
class. Languages like Python are more precise that the pseudocode algorithms we’ve seen so far, but
are still fairly easy for humans to read (all things considered, of course!). When the algorithm that
we write in Python is actually run on a computer, there are multiple pieces of software and hardware
that automatically translate the code into the infamous sequences of 1s and 0s. There are several
steps to this translation process, and each one refines the original algorithm into a lower and lower
level of abstraction. In other words, without abstraction, modern computers wouldn’t work at all
even for the simplest tasks!

To summarize, abstraction allows us to think about performing higher-level, more complex
actions without worrying about how they are performed. Abstraction doesn’t mean that the lower-
level details of how an abstracted algorithm is carried out don’t exist or never have to be written at
some point. It is just a mechanism that allows us to ignore such details when it is convenient or until
they are needed - a mechanism that is central to the entire field of computer science.
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3 — Visual Output in Processing

Learning Objectives

After studying this chapter, a student should be able to:

• distinguish between a programming language and a development environment
• describe the visual coordinate system used in Processing
• author Processing programs with simple visual output such as lines and shapes

3.1 The Python Language
A programming language is a language that human programmers use to give specific instructions to
a computer. In some ways, programming languages are similar to natural languages, such as English,
French, Russian, Punjabi, and many others. Both types of languages have vocabularies, or words
that mean specific things. Both types of languages have a grammar or syntax, which specifies how
words in the language can be combined with each other and with punctuation. A big difference is that
with a natural language, syntax doesn’t have to be perfect in order to be understood by an audience.
With a programming language, you do not have this luxury; if you make a single mistake in your
syntax, the computer will not understand you at all. Another difference is that natural language
can be ambiguous: the same word can have multiple meanings, or might be interpreted differently
by a different audience. With a programming language, there can be no ambiguity; every word or
statement has one and only one meaning.

For this class, we will use a programming language called Python. A Python program consists
of one or more valid Python statements, each on its own line. Line breaks (i.e. the thing you get when
you hit the ‘return’ or ‘enter’ key on most keyboards) are very important for separating statements in
Python (as is indentation and other forms of “whitespace”, as we will see a little later). The following
is an extremely simple, but complete, Python program:⌥ ⌅
print("Hello world!")⌃ ⇧
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The only effect of this program is to print the phrase Hello world! to the computer’s monitor.
The word print is part of Python’s built-in vocabulary. It is a command that displays text to the
screen. It’s important to note that Python, as a language, is case-sensitive, so print and Print are
not the same thing. In general, if you’re trying out any of the examples you see in these readings,
you should type them exactly as they appear here, including case and punctuation. Don’t worry too
much about what the brackets or quotation marks mean yet, we’ll get to why you need those later.
For now, they’re just part of the proper Python syntax for the print command.

The following is an example of an incorrect Python program:⌥ ⌅
print("Hello world!") print("Goodbye!")⌃ ⇧

Although on their own, both print("Hello world!") and print("Goodbye!") are valid
Python statements, the syntax rules of Python insist that you can’t put them on the same line.
If you try to ask a computer to run this Python program, you’ll get an error. Don’t expect the
computer to suggest the obvious correction of just moving the second statement to a new line either.
Computers, as a general rule, aren’t very good at telling you why your syntax is incorrect, which can
be understandably frustrating for novice programmers. Just remember, the computer isn’t actually
trying to make things difficult for you, it simply isn’t anywhere near as smart as you are!

3.2 The Processing Environment

A development environment is a piece of software that is designed to help programmers write
computer code. For this class, we will be using a development environment called Processing.
Processing makes our lives as programmers easier in a variety of ways. For instance, just as a
document editor like Microsoft Word can recognize spelling mistakes and bring them to your
attention, Processing recognizes Python keywords and other programming constructs and can
highlight them in different colors, making our code easier to read and write. Telling the computer to
run your code in Processing is as simple as pressing the "Run" button that appears directly above the
coding window. Processing also gives us a console where your program can print any text-based
output, as well as a separate window called the canvas for displaying simple graphics or pictures that
your program might draw. All of these things are just conveniences for us. There’s no reason we
couldn’t write our Python code in a plain text editor like Notepad 1 and then later tell the computer
to run it. But by using Processing, we have everything we need all in one place.

Processing actually goes a little beyond other development environments in that it expands the
Python language a bit by adding some new commands that don’t normally exist in plain Python.
For instance, Processing allows us to create simple visual output, such as lines and shapes, often
with only a single command. Without the Processing environment, doing these sorts of things using
Python is still possible, but more complicated. The downside to using the Processing environment is
that it’s a bit tricky for novices to tell where basic Python stops and the extra functionality provided
by Processing begins. Throughout these readings, we’ll try to point out the distinction where we
can, but ultimately it’s not all that important for the moment anyway. Our goal here is to learn the
fundamentals of programming, not to learn every possible detail of a specific language or tool.

1Never use a document editor like Microsoft Word to write code. Document editors often sneakily insert invisible
formatting commands into your document, which will mess up your code when the computer tries to run it.
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3.3 Drawing in Processing
Processing makes it easy to create nice-looking visual output quickly, so we’re going to take
advantage of that to write our very first basic Python programs. We’ll start off by using the line
command to draw a line on the screen, like so:⌥ ⌅
line(0, 0, 10, 10)⌃ ⇧

The program above draws a rather small, diagonal line on the canvas that Processing automatically
pops up every time you run a program. You have likely noticed that we included four numbers,
separated by commas, inside the brackets next to the line command. Those numbers are to tell
Processing where to draw the line on the canvas. This illustrates a very important concept in computer
science, namely, the parameterization of commands. The people who created Processing could have
designed the line command such that it always drew the line in exactly the same place, but that
wouldn’t have been very useful. Instead, by specifying four numeric parameters for the command,
the designers created a single command that allows programmers to draw a line anywhere they like
(well, anywhere on Processing’s canvas).

In order to effectively use the line command, we need to know the meaning of those four
numbers. In this case, it’s easy: the numbers specify the (x,y) coordinates of the end points of the
line. In other words, in English, we would express the command above as “draw a line from
coordinate (0,0) to coordinate (10, 10)”. The ordering of the numbers is how Processing
knows which number is which; thus, the first number is always the x coordinate of the first point,
and so on.

3.3.1 The Processing Coordinate System
Processing places any lines or shapes that it draws on its canvas. The canvas uses an (x,y) coordinate
system to specify locations. You might recall from math class that coordinate (0,0) (the origin)
is normally located in the center of the standard Cartesian coordinate system. That system has
four quadrants (some of which use negative coordinates for x and y). The coordinate system used
by Processing is a little different from the Cartesian one. In Processing, there are no quadrants,
coordinates are never negative, and the coordinate (0,0) is always the top left corner of the canvas.
This means that when we’re talking about locations on the canvas, increasing the x coordinate moves
us to the right (which you’re used to in math class) and increasing the y coordinate moves us down
(which is the opposite of what you’re used to in math class).

x

y

(0,0)

(1,2)

Figure 3.1: Cartesian Coordinate System
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(0,0)

(1,2)

Figure 3.2: Processing Coordinate System

The size of the canvas is measured in pixels, and by default, the Processing canvas is 100x100
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pixels in size. We can change that with the size command, like so:⌥ ⌅
size (200, 200)
line(0, 0, 150, 150)⌃ ⇧

Here, the two numbers in the size command specify the width and height (in that order) of the
canvas in pixels. You’ll have to play around with Processing to get a sense of how big a pixel is, but
it’s fairly small; you won’t see much of a difference between line(0, 0, 50, 50) and line(0,
0, 51, 51), for example.

3.3.2 Other Basic Shapes
Processing provides several other commands for drawing two-dimensional shapes. These are just a
few examples.

Figure 3.3: Rectangle, Ellipse, and Points drawn in Processing

Rectangles⌥ ⌅
rect(10, 10, 20, 30)⌃ ⇧

The rect command, as you might expect, draws a rectangle on the canvas. Again, Processing
needs to know some more details about the rectangle, such as where to draw it and how big it should
be, and that’s what the numbers are for. The first two numbers specify the (x,y) coordinates of the
upper left corner of the rectangle, and the second two numbers specify the width and height of the
rectangle, in that order 2.

Ellipses⌥ ⌅
ellipse (50, 40, 20, 30)⌃ ⇧

We can draw ellipses as well. In this case, the first two numbers specify the (x,y) coordinates of
the center of the ellipse, and the next two numbers specify its width and height respectively. If the
width and height are equal, then we get a circle.

2It might occur to you that there are other ways to describe the size and location of a rectangle, and indeed, Processing
lets us use some of these other ways if we really want.
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Points⌥ ⌅
point(42, 17)⌃ ⇧

The point command draws a single point on the canvas. Since the point’s size is fixed at one
pixel, we only need two numbers to describe the point, and these are its (x,y) coordinates.

3.3.3 Text Output
Processing is a great tool for drawing shapes and pictures, but sometimes we might want to display
less flashy but still useful textual output as well. There are two ways we can do this. We’ve already
briefly seen the print command at the start of this chapter. As a reminder, it looks like this:⌥ ⌅
print("Here is some text.")⌃ ⇧
The print command displays the text that you provide between the parantheses to the console,
which is the black area underneath your coding window in Processing. Notice that the text we want
to display is enclosed in double-quotes (“ and ”), and those quotes don’t get displayed along with
the text when the print command is executed by the computer. In Python, any time you’re working
with words or sentences that you want to be displayed “as is”, you need to enclose them in double
quotes. For instance, this print statement will result in an error.⌥ ⌅
print(You can try this. It won ’t work.)⌃ ⇧

As we’ve seen with the other commands in this chapter, you don’t need the quotation marks
when dealing with numbers. You only need them with text. In later chapters, we’ll say more about
why this is so.

Processing also lets you display text on its canvas. For that, we use the text command, like so:⌥ ⌅
text("Hello there!", 0, 10)⌃ ⇧
You’ll notice that the text command needs two extra numbers that print didn’t. That’s because
since we’re using the canvas now, the text command needs to know not only the text that you want
to display, but also where on the canvas to put it. The two numbers give the (x,y) coordinates of
where to place the text.

3.3.4 Processing Versus Python
With the exception of the print command, all of the commands we’ve described in this section are
specific to the Processing environment and do not exist in plain Python. In fact, as a general rule,
if a command has anything to do with drawing on the canvas (including commands like size for
re-sizing the canvas), then it’s one of the ‘extra’ commands that Processing provides. Of course,
these commands still follow standard Python syntax — the commas and the parantheses are part of
that — but they’re not in Python’s default vocabulary. Again, this distinction isn’t going to be terribly
important for the purposes of this course. Just don’t be confused if you find the line command
doesn’t work in plain Python.
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4 — Functions

Learning Objectives

After studying this chapter, a student should be able to:

• describe what a function is
• describe how to call a function
• explain what the arguments of a function are
• compose functions in Python that perform a subtask
• compose functions in Python that accept arguments as input
• describe the role of a function’s parameters
• distinguish between arguments and parameters
• author appropriately descriptive comments to document a function

In Chapter 2 we talked about encapsulation, which is the idea of giving a name to an algorithm
and allowing us to refer to all of the instructions in that algorithm simply by referencing its name.
Python allows us to do this through a mechanism called functions. Functions allow us to give a name
to a block of Python code. If an algorithm is implemented as a function in Python, we can run the
algorithm by using the function’s name in a Python program. We refer to this process as calling the
function.

Section 4.1 of this chapter introduces functions as a method of abstraction, and their relationship
to algorithms. Section 4.2 discusses the Python syntax for calling functions. Finally, section 4.3
introduces the Python language syntax for defining functions so that we can implement our own
algorithms as functions.

4.1 Functions and Abstraction

Functions are an example of abstraction. They allow us to refer to a block of Python code by name,
and ask for that code to be executed. The code within a function can be executed without knowing



30 Functions

what it is, or how it works. In fact, we’ve secretly been doing exactly that already, except we’ve been
using the word ‘command’ instead of ‘function’. All of the Processing code for drawing shapes from
Chapter 3 are examples of using functions.

Recall from Chapter 2 that algorithms can have input. Thus, it may not surprise you that
functions can have input, and indeed most functions do. Inputs to functions in Python are called
arguments. When we used the line function before, we provided four numbers that told the
Processing environment where to draw the line on the screen. Those numbers were arguments to the
line function.

We also said in Chapter 2 that algorithms can have output. Python functions can have output too,
but we’re not going to talk about that too much until a little later. Of course, you might rightly be
asking yourself: “isn’t making something appear on the computer’s monitor a form of output?”. In a
way, that’s true. However, with regard to functions, output has a very precise and specific meaning
and making something appear on the screen doesn’t qualify. We’ll return to this point in a later
chapter.

The key thing to note about functions is that, at the time that you write the code that calls them,
you only need to know what the function does, not how it does it. You might think that drawing a
line on a screen sounds pretty simple, but it’s actually still too abstract for a computer to be able to
do it without further explanation. The authors of Processing wrote the details of the line function
for us, and we don’t need to know how they did it in order to use it. All we need to know is what it
does, and what the meaning of its arguments are.

4.2 Calling Functions
In Python we invoke the algorithm inside of a function by calling the function. To call a function,
we write the name of the function followed immediately by a pair of parentheses. The arguments to
the function (inputs!) are given as a comma-separated list within the parentheses. We illustrate this
with the line function we saw in Chapter 3:⌥ ⌅
line(0, 0, 10, 10)⌃ ⇧
We have coloured the different parts of the function call:

Red: The function name.
Green: Parentheses enclosing the list of arguments.
Blue: The arguments (inputs) to the function.
Brown: The commas separating the arguments in the argument list.

All function calls have the same general format and look like this:⌥ ⌅
functionName(argument1, argument2, argument3, ... )⌃ ⇧
Functions can, of course, have different numbers of arguments. We’ve already seen an example of
this as well; the point function only had two arguments, and looked like this:⌥ ⌅
point(0, 0)⌃ ⇧
In fact, a function might require no arguments at all. The clear function in Processing, which
simply sets the entire drawing canvas to black, is an example of this:⌥ ⌅
clear()⌃ ⇧
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Notice that we still need to include the parantheses, even though there is nothing in them! That’s just
proper Python syntax for making a function call. From now on, when we refer to a function like
line() in this text, we’ll include a pair of matching round brackets just to make it clear that we’re
talking about a function. This is just a short-hand for clarity; note that we didn’t include any numbers
in between the parantheses, even though to actually call the line() function, you would need to
provide four numbers as arguments. We’re just making it clear that line() is, in fact, a function.

4.3 Creating Functions
The ability to create your own functions and create abstractions of your own algorithms is a
tremendously powerful feature in any programming language. The main reasons for writing your
own functions are abstraction and decomposition of large programs into manageable pieces. We
can give names to our algorithms and abstract away their details by writing them as functions. The
purpose of this section is to learn how to do this in Python.

4.3.1 Defining Functions: The def Statement
In Python, functions are defined by writing the keyword def. A keyword is a name we give to words
in a programming language that have special meaning. Up until now, you might have thought that
words like print and line were Python keywords, but they weren’t: they were just function names.
Keywords cannot be used as function names, or as anything else for that matter, except for the very
specific purpose defined by the programming language.

4.3.2 Functions that Perform Simple Subtasks
The simplest form of function is one that takes no arguments as input. Suppose that you wanted to
put your name and contact information in the upper left corner of the canvas for every program that
you write in Processing. We can create an abstraction of this algorithm by writing a function called
signature() that performs the algorithm when we call it. Here’s what that definition would look
like:⌥ ⌅
def signature ():

text("Cookie Monster", 5, 10)
text("123 Sesame Street", 5, 20)⌃ ⇧

Let’s break down what’s happening here. The first line uses the keyword def to define a function
called signature(). The name of a function in a function definition must be followed by a pair
of parentheses, then a colon. This entire line is called the function header. Notice how the rest
of the lines after the function header are indented. In Chapter 1, we called this a block; when it’s
part of a function, we also refer to such a block as the function body. Just like in our pseudocode,
we group statements together in blocks by indenting them. All of the Python code that is part of a
function body has to be in the same block, so it has to be indented. What’s more, it must be indented
by exactly the same amount or Python will complain thinking that some lines are not part of your
function even when you want them to be1.

1If we’re getting really picky, we can note that you can use either tabs OR spaces for indentation, but whichever you
pick, you must be consistent. If you mix spaces and tabs in together, Python will complain!
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⌥ ⌅
# Wrong indentation; Python will think that the second text line
# is not part of the function , and will just execute it.
def signature ():

text("Cookie Monster", 5, 10)
text("123 Sesame Street", 5, 20)

# Wrong indentation; Python will issue an error here because the
# indentation is inconsistent , and it can’t figure out
# which lines are part of the function and which aren’t
def signature ():

text("Cookie Monster", 5, 10)
text("123 Sesame Street", 5, 20)⌃ ⇧

Now, the correctly indented function definition doesn’t actually do anything other than define
the function. A function definition is just a set of instructions that has been given a name. Those
instructions only get executed by the computer when the function is called by using its name
somewhere else in the program:⌥ ⌅
# defines the function only:
def signature ():

text("Cookie Monster", 5, 10)
text("123 Sesame Street", 5, 20)

# this function call tells Python to execute
# the instructions defined above
signature ()⌃ ⇧

Finally, it’s worth noting that once you’ve defined a function (by using the def keyword), you
can call it elsewhere in your program not just once, but as many times as you like. In fact, that’s the
main point of having function definitions at all! Each time the function is called, the computer will
execute the instructions that are specified in the function definition.

Defining before Calling
In Python functions must be defined before they are called. Thus a function definition must appear
in a file prior to any calls to that function.⌥ ⌅
signature ()
# this fails -- function called before definition

def signature ():
text("Cookie Monster", 5, 10)
text("123 Sesame Street", 5, 20)

# this is fine , by this point the function has been defined
signature ()⌃ ⇧
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4.3.3 Comments in Python
By this point, you might be wondering why we started including lines that begin with the # symbol
in our code examples. In Python, the # denotes a comment. All of the text on any line that begins
with the # symbol will be completely ignored by the computer when it tries to execute your code.
Comments are purely to help humans understand the computer code when they are reading it.
Because computer programs can get complicated very quickly, good commenting is essential to
being a good programmer. Of course, since comments are a non-technical part of programming,
rigorously defining a ‘good’ comment isn’t very easy. One way we can put it is that good comments
should be at a higher level of abstraction than the code itself. Comments should try to explain the
purpose or behaviour of whole blocks of code — you certainly don’t need a 1-to-1 ratio between
lines of code and comments.

The following is an example of bad commenting:⌥ ⌅
# draws a line from (10, 10) to (10, 20)
line(10, 10, 10, 20)
# draws a line from (10, 10) to (20, 10)
line(10, 10, 20, 10)
# draws a line from (20, 10) to (20, 20)
line(20, 10, 20, 20)
# draws a line from (10, 20) to (20, 20)
line(10, 20, 20, 20)⌃ ⇧
The comments here are completely redundant to anyone who understands Python syntax and knows
what the line() function does. Good comments should instead give an idea of why you are calling
the line function, and how (if at all) the four function calls are related. The following is an example
of much better commenting:⌥ ⌅
# draws the outline of a square using lines
line(10, 10, 10, 20)
line(10, 10, 20, 10)
line(20, 10, 20, 20)
line(10, 20, 20, 20)⌃ ⇧

4.3.4 Documenting Function Headers
The purpose of a function is to encapsulate a portion of your program so that it can be called without
the need to know exactly how the function does its job. As a result, function headers should always
be immediately followed with documentation that indicates what the function does and how to use it.
Because this function documentation is so important, we use a separate syntax for it: the function
documentation is enclosed in matching sets of triple quotes (the " character repeated 3 times). It
should look like this:⌥ ⌅
def signature ():

""" prints my name and address
to the upper left corner of the canvas """
text("Cookie Monster", 5, 10)
text("123 Sesame Street", 5, 20)⌃ ⇧
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The text in between the triple quotes is a special kind of comment called a docstring. You can only
use docstrings when you are defining a function, starting on the line immediately after the function
header. The docstring can span multiple lines if need be, as shown in the example above.

4.3.5 Functions That Accept Arguments
As we mentioned in Chapter 2, most useful algorithms have inputs. The same is true of functions. In
the function header, we can specify the inputs that the function needs in order to do its job. When
defining a function header, we call these inputs parameters.

Let’s try an example of this. Suppose you were writing a program in Processing and you knew
you were going to draw a lot of circles on the screen. We already know we can use the ellipse()
function to do this, but ellipse() takes four arguments, and that’s a lot of typing. We’ll write a
function that only draws circles to make things more convenient for us.⌥ ⌅
def circle(x, y):

""" this function draws a 15x15 circle
x: x-coordinate of the circle ’s center
y: y-coordinate of the circle ’s center
"""
ellipse(x, y, 15, 15)⌃ ⇧

In addition to the def keyword and the name of the function, you can see that we now have something
inside the parentheses of the function header, namely, x and y separated by a comma. This shows
that whenever you call the function, you’ll need to give it two arguments, and that whatever the value
of those arguments, the function is going to refer to the first argument as x and refer to the second
argument as y. In other words, the function is going to give names to any inputs that you give it. It
has to do this, after all, because the function doesn’t know in advance the values of the arguments it
will be given. Ideally, these names should be chosen so as to give some idea of what the parameters
will be used for.

The function body here consists of just one line of code, where the x and y parameters are passed
along as inputs to the ellipse() function that we saw in Chapter 3.

Once we’ve defined our circle() function, we can call it multiple times to draw circles on the
screen. The following code will draw three circles in a single column by using function calls to
circle().⌥ ⌅
def circle(x, y):

""" this function draws a 15x15 circle

x: x-coordinate of the circle ’s center
y: y-coordinate of the circle ’s center
"""
ellipse(x, y, 15, 15)

circle (10, 10)
circle (10, 30)
circle (10, 50)⌃ ⇧

Note that the function definition must occur before any attempt to call the function. The
following code, for instance, will result in an error:
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⌥ ⌅
circle (10, 10)

def circle(x, y):
""" this function draws a 15x15 circle

x: x-coordinate of the circle ’s center
y: y-coordinate of the circle ’s center
"""
ellipse(x, y, 15, 15)⌃ ⇧

Arguments Versus Parameters
While talking about functions, we’ve used both the terms arguments and parameters in a way that
might make them seem like interchangeable words. They’re not, but it can certainly be a little
tricky to keep them straight. Arguments are the values that we pass to a function when we call it.
Parameters are the names listed in between the parantheses in the definition of the function header.
So with regard to our circle() example from before, it would be correct to say “circle() is a
function that has two parameters called x and y”. It would also be correct to say “we later called the
circle() function with arguments of 10 and 30.” To put it another way, parameters tell you what
the function needs; arguments are the specific values that you give the function in any particular
instance.

4.3.6 Designing Programs with Functions
One of the main purposes of functions is to make programs easier to design and read. Take a look at
the following program in Processing. Can you figure out what it does just by looking at it?⌥ ⌅
size (200, 200)
ellipse (100, 35, 25, 25)
line (100, 50, 100, 80)
line (100, 52, 70, 45)
line (100, 52, 130, 45)
line (100, 80, 85, 125)
line (100, 80, 115, 125)⌃ ⇧

Of course, you could copy this program into Processing and run it to see what you get, but even
then, you would only know what the program does as a whole. If there was some small thing about
the program’s behaviour that you wanted to change, you wouldn’t know where to start.
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Here’s the same program, but organized into functions. Now can you guess what it might do?⌥ ⌅
def drawHead ():

ellipse (100, 35, 25, 25)

def drawBody ():
line (100, 50, 100, 80)

def drawArms ():
line (100, 52, 70, 45)
line (100, 52, 130, 45)

def drawLegs ():
line (100, 80, 85, 125)
line (100, 80, 115, 125)

size (200, 200)
drawHead ()
drawBody ()
drawArms ()
drawLegs ()⌃ ⇧

Sure, the overall program is longer now since we had to type all of those function headers, but
the organization is much better. And if you wanted to tweak this program — say you decided that
the legs were too long — you know exactly where to start looking without messing up anything else.
Of course, even this is just a very simple example. Functions are even more useful when they have
parameters that let us alter their behaviour in different circumstances, like with the line() function
that Processing provides for us.
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5 — Colour in Processing

Learning Objectives

After studying this chapter, a student should be able to:

• describe the grayscale colour model
• describe the RGB colour model
• author Processing code that uses colour

Proper use of colour can make visual output more appealing and useful. In this chapter, we’ll
learn how to use colour in our Processing programs.

5.1 Grayscale Colour
The simplest form of digital colour is the grayscale colour model. In grayscale, vibrant colours that
you know and love, like blue, red, yellow and so on, don’t exist. There’s only black and white, and
in between them, various shades of gray.

In Processing (and on computers more generally), colour is represented by numbers. A grayscale
colour is represented by a single whole number in the range of 0 to 255 (inclusive). 0 means black
and 255 means white. All the values in between represent increasingly light shades of gray.

0 255

Figure 5.1: Grayscale values from 0 (black) to 255 (white)
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5.2 Colour Functions in Processing
Just as Processing provides us with several ready-made functions for drawing simple shapes, it also
provides functions for using colour. We’ll look at a few such functions here.

5.2.1 Background Colour
The background() function changes the background colour of Processing’s canvas. You’ve probably
noticed by now that the default background for the canvas is a light-ish shade of gray, but we can set
it to anything we want. The following function call would set the background to white:⌥ ⌅
background (255)⌃ ⇧

5.2.2 Stroke Colour
The stroke() function sets the colour that Processing will use to draw lines and the borders around
all its shapes. It’s worth noting that calling this function by itself won’t actually appear to do anything
on the canvas. We’ll also need some function calls that draw some lines or shapes to see the effect of
calling the stroke() function. The following program will draw a pair of parallel white lines on a
black background.⌥ ⌅
background (0)
stroke (255)
line(10, 10, 10, 20)
line(20, 10, 20, 20)⌃ ⇧

Notice that in the program above, we only called the stroke() function once, but both of the
lines that get drawn will be white. That’s because calling the stroke() function changes the default
colour for all lines and shapes until it gets called again. If we call the stroke() function a second
time, then any shapes drawn after that point will use the new colour, but it won’t change the colour
of any shapes already drawn. Think of stroke() in the sense of painting on a real-life canvas with
a paintbrush; you dab the paintbrush into the paint colour you want to paint with so that every new
stroke you draw on the canvas will take on that colour until you dab the paintbrush into another paint
colour, from whence all new strokes after that will take on the new paint colour. For example, the
following program draws two white lines followed by two grey lines (all on a black background).⌥ ⌅
background (0)
stroke (255)
line(10, 10, 10, 20)
line(20, 10, 20, 20)
stroke (125)
line(10, 40, 10, 50)
line(20, 40, 20, 50)⌃ ⇧
It might occur to you that there are other ways Processing could have handled the issue of setting
colours for shapes. For instance, instead of having the notion of a default stroke colour that Processing
remembers and uses for all forms of drawing, the authors could have designed the line() function
(and all other functions that draw shapes) to have an extra function parameter that specifies the colour
of that particular line or shape. Doing it the way they did was a conscious design decision that the
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Processing authors made. Whether or not this decision was the right one depends on what the people
who use Processing — people like you — find most useful.

5.2.3 Fill Color
The fill() function sets the default colour that Processing will use to fill the middle of shapes
that it draws. Conceptually, it’s the same as the stroke() function in that when you call it once,
all subsequent shapes will use the new colour until the fill() function gets called again to set a
different colour. The following program uses the fill() function to draw a white box and a black
box (on the default gray background).⌥ ⌅
fill (255)
rect(10, 10, 20, 20)
fill (0)
rect (10, 50, 20, 20)⌃ ⇧
The only extra thing we’ll note here is that the outline for the white box is still clearly black (and so
is the outline of the black box), even though the middle of the box is white. If we wanted the box to
be completely white, we’d have to change both the stroke colour and fill colour like so:⌥ ⌅
fill (255)
stroke (255)
rect(10, 10, 20, 20)⌃ ⇧

5.3 The RGB Colour Model
Processing also implements the RGB colour model, and this is what we use if we want fuller access
to the colour spectrum. Under the RGB model, colours are represented by three separate numbers,
instead of just one. As before, the numbers range from 0 to 255. The three numbers represent
the intensities of Red, Green and Blue (RGB) light, respectively. For example, the RGB value
(255,0,0) represents pure red, because the red component (the first one) is at its maximum value
and the other two components are zero. Similarly, (0,255,0) is pure green. (255,255,0) is bright
yellow, since that’s the colour we get from mixing red and green light. (0,0,0) gives us black (the
absence of any light), and (255,255,255) gives us white.

Thinking about colour as a mixture of different colours of light, as done in Processing and almost
all digital displays, is known as the additive colour model. This is in contrast to the subtractive
colour model, which is the model we use if we’re making colours by mixing paints or dyes. That’s
why ink for colour printers typically comes in cyan, magenta, and yellow, and not red, blue and
green. But the only important thing for us to know right now is that Processing uses the additive, not
the subtractive, colour model.

5.3.1 Using RGB colours in Processing
It turns out that all of Processing’s colour-related functions we saw when using grayscale have an
RGB colour version as well. For instance, if we want to set the canvas background to some RGB
colour, we can do so with the background() function:⌥ ⌅
background (0, 0, 255)⌃ ⇧
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Figure 5.2: The RGB colour model with examples of additive colour mixing

Notice that the function name background() is exactly the same as when we called it with a
grayscale value, but this time we provide three arguments instead of just one. You might think this
is at odds with our earlier statement that “nothing in a computer program can be ambiguous”, but
it actually isn’t. When we make this function call, Processing looks through all of the functions
it knows about and asks itself “can I find a function called background() that has exactly three
parameters”? It is the function name in combination with the number of parameters that allows
Processing to uniquely identify the correct function definition to run.

The stroke() and fill() functions, and indeed all Processing functions that involve colour,
work the same way and are capable of using either grayscale or RGB colour based on the number of
arguments provided when calling the function.
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6 — Interaction and Events

Learning Objectives

After studying this chapter, a student should be able to:

• define the elements of the interaction cycle
• distinguish between interactive and run-to-completion systems
• describe the behaviour of the Processing setup() function
• describe the behaviour of the Processing draw() function
• author basic interactive Processing programs

One of the big strengths of using the Processing environment is that it very quickly lets us create
interactive systems. In this chapter, we’ll define the essential elements of such systems, and present
the Processing functions that facilitate their use.

6.1 Interactive Systems
An interactive system is a computer program that is designed to continually interact with a human
user. The idea is that the human performs some action that the computer can detect, the computer
processes that action and gives immediate feedback to the human. The human then decides what to
do next based on the feedback, and the process continues as long as the human desires. Below we’ll
describe each of the elements of interactive systems in more detail.

6.1.1 The User
In computer science, the humans who are ultimately going to use a computer program on a regular
basis are typically called users. The user is — or at least, should be — always the one in control of
using an interactive system. Thinking, planning and decision-making are all jobs for the user, and in
fact, users can sometimes get quite resentful if the system tries to take away one of these jobs!

Sometimes, the intended user for an interactive system is extremely general. The Google search
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engine is an interactive system and it is used by virtually everyone who uses the internet. Other times,
a system’s user-base is much more specific. For example, software designed to control a medical
imaging machine is only likely to be used by doctors, nurses, and medical technicians. Knowing the
capabilities of your users is often a key aspect of designing good interactive systems.

6.1.2 The System

The system is the computer program that interacts with the human user. The system needs to be able
to interpret the actions of the human user, perform calculations, modify any data it might be working
with, and modify its behaviour according to what the user needs and wants. It’s also worth noting
that the system is very rarely a stand-alone entity. It’s usually sitting on top of a whole host of digital
infrastructure that creates several layers of abstraction in between the human user and the system
itself. For example, if you click the mouse on your computer, it’s actually the operating system
(for instance, Windows or maybe Mac) that first “realizes” that the mouse has been clicked, and it’s
the operating system that passes along this information to other programs that are running on the
computer.

6.1.3 User Actions

User actions are physical events initiated by the user that the interactive system is able to detect.
Moving the mouse or pressing the spacebar key are examples of user actions. Scratching the back of
your head is not a user action, because the computer has no idea that you did it1. The purpose of a
user action is to communicate something to the computer or to tell it to perform some task.

6.1.4 System Feedback

System feedback is the mechanism by which the system gives information back to the human user.
This too must be done using a medium that the human user can access. The vast majority of system
feedback is visual, and is achieved by displaying information on the computer’s monitor. Sometimes
audible feedback is used as well, such as the computer making a “ding” sound when the user clicks a
button (or perhaps fails to click a button). Once the user has this feedback, they can use it however
they please in order to inform their planning and decision-making as they continue to interact with
the system.

6.1.5 Interactive versus run-to-completion

It might seem at this point that nearly any computer program could be called an interactive system,
but that isn’t the case. Traditionally, computer programs were often viewed as run-to-completion
systems. The virus-scanning programs found on many modern computers are examples of run-to-
completion systems. They pop up a little box that says “I’m about to scan your computer for viruses,”
and then they go ahead and do it (often whether you really like it or not!). There’s no notion of
continuous interaction with the human user. In fact, all of the sample Python programs we’ve shown
in these readings so far have been “run-to-completion” systems. Such systems are sometimes still
useful for teaching fundamental concepts in computer science, but wherever possible, we’re going to
try to use examples of interactive systems in this course from this point onwards.

1Not in general, anyway. But interfaces based on picking up user gestures via a computer’s camera do exist, and you
might even get to build one if you are pursuing a computer science degree.
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6.2 Interaction in Processing
The Processing environment provides some extra functionality that makes it more convenient for us
to build interactive systems. Previously, we’ve seen how Processing makes it easy for us to draw
lines and shapes simply by using function calls to some ready-made functions. For interaction, the
extra functionality is a little different. Instead of providing complete functions, Processing specifies a
set of pre-determined function names that are related to making interactive programs. We still have
to write the function definitions for these functions ourselves, using the def keyword that we learned
in Chapter 4. But as long as we name these functions using a set of special names, Processing will
automatically use these functions for us in interesting ways. Let’s take a look at how this works.

6.2.1 The setup() function
The setup() function is a function that Processing will automatically call for you as the very first
thing that happens whenever you run your Processing program. You don’t need to put a function
call anywhere in your code to make this happen, you just need to define the setup() function itself.
As you might guess from the name, the setup() function is an ideal place to put instructions about
things that only need to happen once and aren’t going to change once your interactive system starts
running. The following program is an example of defining the setup() function so as to give us a
300x300 canvas and set the initial background colour to white:⌥ ⌅
def setup ():

size (300, 300)
background (255)⌃ ⇧

Including a definition of the setup() function in your program actually does one more thing
which is a little bit subtle. If you define a setup() function in your program, then you cannot use
any statements that draw on or modify the Processing canvas outside of any function definition. This
is because by including a definition of setup(), you’re telling Processing that you’re making an
interactive program, and so it uses slightly different rules. The following program, for example, will
result in an error:⌥ ⌅
def setup ():

size (300, 300)
background (255)

rect(20, 20, 15, 30)⌃ ⇧
The rect() funtion call isn’t indented in the code above, so it’s not part of the setup() function.
Processing will complain about this. You can put other kinds of statements outside of the setup()
function so long as they have nothing to do with the canvas. The following program will work just
fine:⌥ ⌅
def setup ():

size (300, 300)
background (255)

print("Set up and ready to go.")⌃ ⇧
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Recall that the print() function displays text on the console, not on the canvas, so this is okay.
Finally, you can put statements that draw shapes inside the setup() function if you want. These

shapes will be drawn on the canvas as soon as your program starts running, since that is when
setup() automatically gets called.

6.2.2 The draw() function
The draw() function is a function that Processing will automatically and continually call for you
for as long as your program is running. By default, Processing will call this function 60 times per
second, which is once every 16.67 milliseconds. This might sound like a lot of work for the poor
computer, but remember, repetitive work like this is exactly what computers are for! Regardless,
it’s certainly true that any statements you put inside the definition of the draw() function will get
executed an awful lot. The following program increases the size of the canvas using setup(), and
then repeatedly draws a circle in the center of the canvas using draw():⌥ ⌅
def setup ():

size (200, 200)

def draw ():
ellipse (100, 100, 10, 10)⌃ ⇧

Now at this point, you might well be wondering what the difference is between “repeatedly drawing
a circle” and just “drawing a circle”. In this particular case, to a human being watching this program
when it runs, there is no difference. To a human, the following program will appear to behave exactly
the same as the program above.⌥ ⌅
def setup ():

size (200, 200)
ellipse (100, 100, 10, 10)⌃ ⇧

To the computer, however, these two programs are quite different. In the first case using draw(),
every 16.67 seconds, the computer is dutifully drawing a circle in the middle of the canvas. The fact
that there was already a circle displayed in exactly that spot is irrelevant to the computer’s logic.
In the second case, the computer just draws the circle once and then doesn’t do anything else; it
has no more instructions that it needs to follow. So why use the draw() function at all then? In
this particular case, we wouldn’t, as repeatedly re-drawing a circle in exactly the same place serves
no constructive purpose. But as soon as we add some interaction to the program, everything will
suddenly fall into place.

Interactive Drawing
In order to make our programs interactive, we need to take user actions into account. One of the most
basic things a user can do is move the mouse cursor around on the screen. Fortunately, Processing
gives us a very easy way to track mouse movement. The special Processing words mouseX and
mouseY will report for us the x and y coordinates of the mouse cursor (so long as the cursor is
anywhere on the Processing canvas). We can then use these values any way we like. In particular,
we can use them as arguments to Processing’s drawing functions. The following program will draw
circles wherever the user moves their mouse on the Processing canvas:
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⌥ ⌅
def setup ():

size (200, 200)

def draw ():
ellipse(mouseX , mouseY , 10, 10)⌃ ⇧

We can see above that instead of passing in fixed arguments to the ellipse() function, like we did
before, we’re now passing in the x and y coordinates of the mouse. Recall that the draw() function is
called automatically by Processing 60 times per second. Whenever that happens, Processing checks
where the mouse is at the time that the function call happens and lets us access that information
using mouseX and mouseY. So each time the draw() function is called, the mouse cursor may be at
a different location and we get a new circle drawn at that location.

If we want to play around with this a little, we can adjust how frequently Processing calls the
draw() function by using the frameRate() function. frameRate() requires a single number as an
argument and that is the number of times per second that Processing should call the draw() function.
If we call the frameRate() function with an argument of 1, then Processing will only call draw()
— and consequently, only update its canvas — once per second. This is really quite slow, as you will
see if you try running the following program:⌥ ⌅
def setup ():

size (200, 200)
frameRate (1)

def draw ():
ellipse(mouseX , mouseY , 10, 10)⌃ ⇧

Due to the very slow frame rate, with this program you can move the mouse quite a long way before
Processing gets around to drawing a new circle.

6.2.3 Event handling functions
Event handlers are special functions in an interactive system that are designed to process user actions.
Unlike the draw() function, which gets called automatically and continually no matter what the
user does, event handlers only get called when specific events occur. Just like with draw() and
setup(), Processing has set aside a list of special function names to be used as event handlers. We
have to define these functions in our programs, but as long as we use the appropriate function name,
Processing will call these functions for us whenever the relevant events occur.

The mouseClicked() function
The mouseClicked() function is automatically called once each time the mouse is clicked (e.g.
pressed down and then released). Suppose we wanted to write a Processing program in which the
user could move the mouse around and draw a circle anywhere they clicked. The following program
would do exactly that.
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⌥ ⌅
def setup ():

size (200, 200)

def mouseClicked ():
ellipse(mouseX , mouseY , 10, 10)

def draw ():
return⌃ ⇧

The only thing thing funny you might note is the word return in the body of the draw() function.
Processing requires the draw() function to be there in order to update its canvas, but in this case, we
don’t really want the function to do anything. So here, the return is just a Python keyword that
says the function body is over and nothing more needs to be done.

The keyPressed() function
The keyPressed() function is automatically called whenever a key — any key — on the computer’s
keyboard is pressed. Let’s say we wanted to write a Processing program where the user could click
to draw circles on the screen, but also give them the option to erase everything and start over by
hitting the spacebar. The following program would do the trick.⌥ ⌅
def setup ():

size (200, 200)
background (210)

def mouseClicked ():
ellipse(mouseX , mouseY , 10, 10)

def keyPressed ():
background (210)

def draw ():
return⌃ ⇧

This program is nearly identical to our previous one, except that now we’ve added the keyPressed()
function. In that function definition, we just call the background() function to erase the screen and
replace it with a fresh, empty background. This will happen any time the user hits the spacebar, or
indeed, any key on their keyboard. There are ways to determine exactly which key was pressed, but
we’ll leave that for later.
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7 — Data and Data Types

Learning Objectives

After studying this chapter, a student should be able to:

• distinguish between atomic data and compound data
• describe what a data type is
• describe what a literal value is in Python
• give examples of literal values corresponding to integer, floating-point, and string data
• use the print syntax to display literal values on the console

7.1 Data
Data is information. Computer programs need data to do anything useful. Data can take many
forms (numbers, text, pictures, etc.), but ultimately, at a low enough level of abstraction, all data is
numbers because that is what computers know how to store. It is abstraction that makes it appear
that we can store things more interesting than numbers, such as images, video, text, web pages, etc.
These things are all just large collections of numbers interpreted in different ways — the different
interpretations are abstractions! At an even lower level of abstraction, all data is just sequences of 0’s
and 1’s, because computer hardware stores data as binary numbers using different electric voltages to
represent the binary digits 0 and 1. Fortunately, computer programmers don’t have to work at such a
low level of abstraction. In the rest of this section we’ll look at the kinds of data we, as programmers,
can use.

7.1.1 Atomic Data
Atomic Data is the smallest unit of data that a computer program can define. The word “atomic”
derives from the word “atom”. At one point in the history of chemistry, atoms were believed to be
the smallest indivisible pieces of matter in the universe. In computer science, the word “atomic” is
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often used to refer to something that is indivisible or cannot be made smaller. By this, we don’t mean
“smaller” in the mathematical sense; just because you can make the number 10 “smaller” by dividing
it by 2 doesn’t mean that the value 10 isn’t an example of atomic data. Rather, we mean “smaller” in
the sense of simplicity. There’s no simpler way to express the number 10 than simply writing 10, so
therefore it’s atomic.

7.1.2 Compound Data
Compound data is data that can be subdivided into smaller pieces of data which are organized in a
particular way. An example of compound data is a list. A list consists of several pieces of data which
have a specific ordering. The data items that comprise a piece of compound data may themselves
be either compound or atomic. For example, we could imagine a list of numbers. The list itself is
compound data, while each piece of data in the list is atomic data. We could also imagine a list of
lists of numbers. In such a case, the list of lists is compound data, and each piece of data in the list is
itself an example of compound data whose individual pieces are, in turn, atomic data.

Don’t worry too much if the notion of “list of lists” makes your head hurt! We’ll revisit the idea
of compound data in more detail later. For now, the only type of compound data we will be using are
strings (which we will define momentarily in 7.1.3).

7.1.3 Data Types
In a computer program, every piece of data, compound or atomic, has a data type. For one last
moment, let us recall that data in a computer is, at a very low level of abstraction that we don’t
usually worry about, made up of binary 0’s and 1’s (we call such numbers bits). The data type of a
piece of data tells the computer how to interpret those bits. For example, the exact same sequence of
0’s and 1’s could be interpreted as a character (or letter) from your keyboard, as a whole number, or
as a fractional number. The computer needs to know which interpretation to choose, so that’s why
Python (and most other programming languages) have a notion of data type.

Atomic Data Types
In this section we describe the most commonly used atomic data types in Python.

Integer Integer data are whole numbers, that is, numbers without a fractional component. Integers
include both positive and negative numbers, as well as the number zero. In Python, there is no
limit to the size of an integer number.

Floating-point Floating-point data are real numbers, that is, numbers that are not necessarily whole
numbers, such as the number 42.5. Floating-point data in Python (and any other language) have
a limited precision, and limited range. This means that numbers with infinite representations,
such as 1/3=0.33333...,

p
2, or p , cannot be represented exactly, and we can’t represent

numbers that are too big either. In Python, floating point numbers can range between 10�308

to 10308 (positive or negative) with at most 16 to 17 digits of precision. For brevity, we will
sometimes refer to floating point numbers simply as floats.

Boolean Boolean data can only be one of two values: True or False. Note again that capitalization
matters – true and false are not valid boolean values.

Compound Data Types
In this section we briefly describe some of the standard compound data types that are built into
Python. However, we will save the the details of most of these until later chapters.
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String Strings are sequences of characters (e.g. letters of the alphabet, digits, and punctuation) and
are usually used to store text. We’ll say more about strings and characters later in this chapter.

List Lists are a sequence of data items. Each item in a list can be of any data type. We’ll discuss
lists in more detail in Chapter 14.

Dictionary A dictionary consists of key-value pairs in no particular order. You can look up values
by their key. We’ll discuss dictionaries in more detail in Chapter 16.

7.2 Literals
A literal is a number or string written right into the program by the programmer, that is, literally
typed right into the program’s code such as 42. In fact, we’ve already been using literals in most of
the sample programs we’ve seen so far. When we use a function call like background(200), the
200 is a literal value that we’re using as an argument to the background() function.

When we use a literal in our programs, Python needs to know the literal’s data type. We
communicate the correct data type to Python by the way we write the literal, as follows:

Integer literals: Any number written without a decimal point is an integer literal. Thus, 42, -17,
and 65535 are integer literals.

Floating-point literals: Any number written with a decimal point is a floating-point literal. Exam-
ples are: 42.0, -9.8, and 3.14159. Note with care that even the literal 42. (decimal point
included) is a floating-point literal because it contains a decimal point. An empty sequence of
digits after the decimal point is different from no decimal point at all! We can try this out in
Processing using the print() function:⌥ ⌅
print (42.)⌃ ⇧
If you run the program above, you’ll get 42.0 printed to the console.
Floating-point literals can also be written in scientific notation. For example, the speed of
light is 3⇥108 m/s, a quantity which can be written as the literal 3e8. Again, we can try this
with the print() function:⌥ ⌅
print(3e8)⌃ ⇧
This program will print the value 300000000.0 to the console. Note the decimal point pre-
ceding the rightmost zero in the sequence. Literals written in scientific notation are always
floating point, never integers.

String literals: Recall that in the previous section we said that strings are sequences of characters.
A string literal is specified by enclosing a sequence of characters with a pair of single or double
quotes. "Hello world." and ’The night is dark and full of terrors.’ are both
examples of string literals. Strings can contain spaces because spaces are characters too. Any
symbol that appears on the keyboard is a character.1 Note that there is a difference between the
literals ’7’ and 7; the former is a string literal and does not actually have the numeric value
of 7, while the latter is an integer literal, which does. Similarly the literals "3.14159" and
3.14159 are different. The former is a string literal, which does not actually have the numeric

1Other, stranger things can be characters too, but we’ll avoid that discussion for now.
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value 3.14159, and the latter is a floating-point literal, which does. However, ’Bazinga!’
and "Bazinga!" are exactly the same.
So why have two ways of writing string literals? It is so that we can conveniently include
single or double quotes as part of a string (after all, the " symbol is on your keyboard, so it’s
also a character!). The string ’The card says "Moops".’ is enclosed in single quotes and
contains two double quotes as part of the string. The single quotes are not part of the string,
they’re special syntax that tells Python that everything between them should be interpreted as
a single piece of string data.⌥ ⌅
print(’The card says "Moops".’)⌃ ⇧
If we run the program above, the phrase The card says “Moops”. will be printed to the
console. Notice that the print() function didn’t print the enclosing single quotes, because
they weren’t part of the data.
By contrast, let’s look what happens with the following program:⌥ ⌅
print("The card says "Moops".")⌃ ⇧
If you try to run this program in Processing, you’ll get an error. The reason for this is because
Python interprets the characters between the first two double quotes (the first one and the
one right before the word Moops) as a string literal. Then the word Moops makes no sense to
Python because Python thinks the string literal is finished. So Python tries to interpret Moops
as part of the Python language, which it isn’t, so Python doesn’t know what to do and gives up.
The bottom line is that you can write single quotes inside string literals enclosed in double
quotes, and double quotes inside string literals enclosed in single quotes.
So should you use single or double quotes for strings? Well, there’s no right or wrong answer
to this question. Unless you need single or double quotes within a string literal, it doesn’t
matter. Normally, one chooses to use either single or double quotes as one’s “default” style,
and only uses the other when necessary.
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8 — Variables and Expressions

Learning Objectives

After studying this chapter, a student should be able to:

• describe what a variable is
• explain the naming rules for variables
• describe what an expression is in Python
• list the basic arithmetic operators in Python
• compose valid arithmetic expressions in Python using operators and literals
• compose valid expressions in Python using variables
• use the print syntax to display literal values and the values of variables on the console
• use Processing event handling to save user actions to a variable

8.1 Variables
Variables are a way of giving names to data. Giving a name to data allows a program to operate on
different data values each time a problem is run. We can then ask Python to do something to the
data with a certain name. If we only had literals, we could only ask Python to do something with a
specific literal data value.

We’ve already seen a hint of just how powerful variables are when we used mouseX and mouseY
in Chapter 6 to draw shapes in different places depending on the mouse position. It turns out mouseX
and mouseY were just pre-made variables that Processing sets up for us. Now we’re going to learn
how to use variables in general.

8.1.1 Variable Names
The essence of variables is assigning symbolic names to data. The names can be almost anything,
but there are a few naming rules we have to follow. Variable names (also called identifiers) in Python
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have to follow these constraints:

• may contain letters or digits, but cannot start with a digit;
• may contain underscore (_) characters and may start with an underscore; and
• may not contain spaces or other special characters.

Thus, KyloRen, IG88, and luke_Skywalker are valid variable names, but these are not:
Luke+Leia_4_Evar (contains special character +), 2ManyStormTroopers (starts with a digit),
and Han Shot First (contains spaces).

In addition, Python keywords (like the def keyword for defining functions) cannot be used as
variable names. Function names, on the other hand, can be used as variable names. So even though
Processing has a function called line(), we could also make a variable named line as well, and
the two would have nothing to do with each other.

As long as we follow the rules above, the computer doesn’t care how we name our variables. But
humans who read your computer code certainly care! In general, you should strive to choose variable
names that give an indication of how the variable will be used. For example, the Processing authors
could have chosen the variable name cookie_crumb instead of mouseX, but that would have been a
poor choice. After all, the variable mouseX has absolutely nothing to do with cookies and everything
to do with the x-coordinate of the mouse! This might seem obvious, but it’s not at all uncommon
for novice programmers to figure out that they’re going to need five variables in their program, so
they name those variables a, b, c, d, and e. Don’t do this! If you can’t come up with a better naming
scheme for your variables than an alphabetical listing, it means you haven’t sufficiently understood
the algorithm you are trying to code. Spend the time to understand the algorithm first, then worry
about trying to code it in Python.

8.1.2 Variable Assignment
Variable assignment is the process of giving a valid name to a piece of data, and it is one of the most
central tasks in a programming language. Python uses the equal sign (=) to assign a variable name to
a value. Here are some examples of variable assignment:⌥ ⌅
x = 5 # assign the name x to the integer 5.

y = 42.0 # assign the name y to the floating -point number 42.0

# assign the name errorMessage to the string: "That didn’t work!"

errorMessage = "That didn’t work!"⌃ ⇧
One of the trickiest things for novices to understand about variable assignment is that it is not a
symmetric operation. In mathematics, the statement 1+2 = 3 is a statement of fact. In that context,
the = sign is saying “the two things on either side of me are the same”. In Python (and most
other programming languages), the = sign is not a statement of fact, but a command to create an
association. Translated into English, the Python statement x = 5 means “assign the variable name x
to the value 5”. Thus, from this point on, when you refer to the variable x you are in turn referring to
the value 5 (but not the other way around!). The thing on the left of the = sign must be a variable
name and the thing on the right of the = sign must be a value. As a result, not only are x = 5 and 5
= x not the same statement, but 5 = x is not even a valid Python statement at all, because 5 is not a
valid variable name.

The data or value to which a variable refers to always has a type, but you cannot tell from the
variable name what type of data it refers to. You can even change the type that a variable refers to:
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⌥ ⌅
x = 10; # x refers to the integer 10
x = 10.0; # now x refers to the floating -point value 10.0⌃ ⇧
There are ways to determine the type of data that a variable refers to, but we’ll leave that for a later
discussion. For now, just be aware that there is no way to guarantee that a variable always refers
to data of a specific type. You can write a program so that a variable is always supposed to be of a
certain type, but the type might change as a result of an error in your code, and there is no way to
force Python to notify you of this.

8.2 Expressions
Expressions in a programming language are combinations of data and operators. Operators are
special symbols which have specific meaning in the programming language. These operators
perform computations on one or more pieces of data to produce a new piece of data. When all of the
computations associated with operators in an expression have been carried out, the result is a new
piece of data whose value is the result of the expression.

This might sound pretty abstract, but you’ll find that you’re already familiar with a lot of the
operators that we’re going to discuss. For example, 1 + 2 is a simple and valid Python expression.
The + sign is the operator in this expression, and it works as you might expect; it combines the two
data values, 1 and 2, using the rules of addition. The value of this expression is the integer number 3.

8.2.1 Literals as Expressions
Literals, just by themselves, are one of the simplest forms of expressions. The value of an expression
containing a single literal is the value of the literal itself. In other words, it would be correct to
say that when Python evaluates the expression 42, it produces the value of 42. This framing might
seem redundant or even a little silly to you at this point, but this sort of thinking is very common in
computer science. We start from something that seems trivially true and build up complexity from
there.

8.2.2 Variables as Expressions
Just like a single literal, a single variable is an expression all by itself. The value of such an expression
is the data value that the variable refers to. So if we tell Processing to print a variable to the console,
it will display the value of that variable.⌥ ⌅
x = 10
print(x)⌃ ⇧
The code above will print 10 to the console.

Since variables can be expressions (they evaluate to a value), they can actually go on the right
side of an assignment command, like so:⌥ ⌅
x = 10
y = x⌃ ⇧
After executing the code above in Python, both x and y will refer to the value 10. It’s important
to note that the statement y = x doesn’t establish any kind of permanent equivalence between x
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and y. It just associates y with whatever value is associated with x at the time that the statement is
excecuted. For example, consider the following code:⌥ ⌅
x = 10
y = x
x = 2
print(x)
print(y)⌃ ⇧
This program will print first a 2 then a 10 to the console. The value of y didn’t change just because x
later got associated with a new value.1

8.2.3 Operators

Operators can be used to write expressions that compute new values from existing pieces of data.
We say that the operator operates on these pieces of data. For example, we mentioned earlier that
one common operator is the + sign, and so the expression 2 + 3 has the value 5. The data items that
an operator operates on are call operands. Operands can be any expression. Most of the operators
we will see are binary operators because they require two operands.2 Operands need not be literals,
they can be variables too:⌥ ⌅
x = 2
y = 3
z = x + y
print(z)⌃ ⇧
Since x refers to the integer 2, and y refers to the integer 3, the value of the expression x + y is 5,
which is the value that gets associated with the variable z and then printed to the screen.

This is also a good time to note that a variable name cannot be used in an expression if it has not
been assigned to a value. For example:⌥ ⌅
x = 2
a = x + z⌃ ⇧
In the above example, when we try to add together the value referred to by x and the value referred
to by z (which refers to no value because none was assigned), Python cannot perform the addition
operation, and issues a NameError which is its way of saying that the identifier z was never assigned
to a value.

Arithmetic Operators

The basic arithmetic operators in Python are summarized in the following table:

1This is definitely true with atomic data. The situation is a bit more complicated when we start dealing with lists, but
that won’t be until a little later.

2Here the word “binary” only conveys that the operator requires two operands, as opposed to unary operators which
only require one operand. Do not confuse binary operands with binary numbers — the latter are entirely different.
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Usage Description Example Expression Value
x ** y Exponentiation; x to the power of y 2 ** 5 32

-x Negation -42 -42
x * y Multiplication; x times y 6 * 7 42
x / y Division; x divided by y 8 / 4 2
x % y Modulo; remainder after integer division of x by y 6 % 4 2
x + y Addition; x plus y 3 + 6 9
x - y Subtraction; x minus y 2 - 7 -5

When using arithmetic operators in Python, the usual order of operations that you’re used to from
math applies and is reflected in the table above. The operators higher in the table are evaluated before
operations lower in the table. Multiplication, division, and modulo have the same precedence and if
more than one of these appears in the same expression, they are evaluated from left to right. Addition
and subtraction have the same precedence (but lower than the others) and again, are evaluated from
left to right.

As you might expect, you can override the normal order of operations by enclosing things in
parentheses. The parentheses have higher precedence than any of the operators. As an example,
the value of the expression 2 * 4 + 10 * 3 is 38. Without parantheses, multiplication happens
first, so the previous expression becomes 8 + 30. By contrast, the value of the expression 2 * (4
+ 10) * 3 is 84. Because of the parantheses, the addition (4 + 10) happens first, so we now have
2 * 14 * 3, which is 84.

Mixing Number Types

Recall that in Python, integers and floating point numbers are completely different data types, and
we have special notation (using a decimal point or not) to tell Python what kind of number we
want to use. So what happens when we try to combine an integer and a floating point number in an
expression? Does Python even allow this? The answer is yes, but it can result in behaviour that is a
bit tricky.

In general, the following rules apply when mixing integers and floats.

• If you combine two integers, the result is an integer
• If you combine two floats, the result is a float
• If you combine an integer and a float, the result is a float

So the value of the expression 2 + 1.5 is 3.5, which is probably what you’d expect. The tricky
part is that the value of the expression 3/2 is not 1.5! It can’t be, since both 3 and 2 are integers and
1.5 is a float. By the rules above, when we combine two integers, the result must also be an integer.
Therefore, in Python, 3/2 is just 1. This is an example of integer division, which is common in many
computer languages. You can think of integer division as being like normal division, except that we
drop (not round!) all decimal places from the answer. So in integer division, 5/2 is 2, and 9/10 is
0.3

3This behaviour changes slightly in different versions of Python, which isn’t relevant to this course, but is relevant if
you go on to take CMPT 141, or start using Python on your own.
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Modulo
On the subject of integer division, you might have noticed the modulo operator (represented by
%) in the table above. Modulo is the complement of integer division; it gives us the remainder of
performing division with whole numbers. For example, take the expression 5%2. When we limit
ourselves to just integers, 2 goes into 5 just two whole times, after which there’s a remainder of 1
that hasn’t been accounted for. The modulo operator gives us that remainder, so 5%2 is 1.

Operators on Strings
Some arithmetic operators can be applied to string operands, but their meanings are different. The
“addition” of two strings results in their concatenation, which means just joining them together
one after the other. The “multiplication” of a string and a number n concatenates the string with
itself n times. For example, the expression ’Winter’ + ’is’ + ’coming!’ produces the string
value ’Winteriscoming!’. The expression ’Na’ * 8 + ’ BATMAN!’ produces the string value
’NaNaNaNaNaNaNaNa BATMAN!’.

8.3 Using Variables in Functions
Recall that functions give us a mechanism by which we can encapsulate algorithms. Since variables
are very useful for writing almost any kind of algorithm, we can certainly use variables in functions:⌥ ⌅
def setup ():

size (200, 200)

def draw ():
size = 10
ellipse (100, 100, size , size)⌃ ⇧

In the preceding program’s draw() function, we associate variable size with a value of 10. We
then make a function call to ellipse() using the value of the size variable as both the 3rd and
4th arguments in the function call. This is the same as just calling ellipse(100, 100, 10, 10),
since we gave size a value of 10.

Since the purpose of functions is encapsulation, any variables that we use as part of a function
are only visible to that function. For example, the following code will result in an error:⌥ ⌅
def setup ():

size = 10
size (200, 200)

def draw ():
ellipse (100, 100, size , size)⌃ ⇧

Since the size variable is assigned a value in the setup() function, when we try to use it in the
draw() function, Python will complain that draw() doesn’t know anything about a variable called
size.

Finally, it’s worth noting that function parameters, which we already learned about, are also
really just variables with one special property: when the function is called, the parameter variables
are automatically initialized with the argument values that were used in the function call. After that,
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they’re just normal variables in every way. The following program re-uses a function parameter for
drawing a donut (or a circle within a circle):⌥ ⌅
def donut(size):

’’’ draws a white donut with a black donut hole
The parameter size gives the radius of the donut ’’’
fill (255)
ellipse (50, 50, size , size)
fill (0)
size = size / 2
ellipse (50, 50, size , size)

donut (30)⌃ ⇧
Notice how in the program above we were able to change the value associated with the size variable
by setting it to one-half of its original value and then use it again in the second function call to
ellipse().

8.3.1 Handling User Input using Variables
We already know that in Processing, we can detect user actions such as mouse clicks and keys
pressed on the keyboard via event handler functions. The thing about computers, though, is that they
don’t actually remember anything unless we explicitly tell them to do so. So how do we get our
program to remember that a key on the keyboard was pressed, or better yet, which key was pressed?
The answer is that we’ll store that information in a variable.

Let’s say, for example, that we wanted to write an interactive program that allowed the user to
type in their name. We can do that by waiting for the user to type on the keyboard and concatenating
each character typed onto a string variable. The Processing code would look like this:⌥ ⌅
def keyPressed ():

name = name + key⌃ ⇧
Here, we’re making use of another pre-defined variable that Processing provides for us called key.
key is just a variable that holds the value of the most recently pressed key on the keyboard. So
every time the user presses a key, Processing automatically calls the keyPressed() function, during
which we add the key that was pressed to the end of a string variable called name.

Now let’s say that as the user types in their name, we want to be able to show them what they’ve
typed. The obvious way to do that is to define the draw() function and display the name using a
function call to the text() function. But there’s a problem here: as we just learned in the previous
section, variables are only visible to the function that uses them. So draw() won’t know anything
about the variable name that we use in the keyPressed() function.

The way to get around this for dealing with user actions is to use the global Python keyword.
This allows us to initialize a variable outside of any function and then make that variable visible to
any function that needs to see it. Thus, we could write our program that prints out the user’s name as
they type it as follows:
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⌥ ⌅
name = "" # initialize with the empty string

def keyPressed ():
global name
name = name + key

def draw ():
global name
text(name , 20, 20)⌃ ⇧

By including the statement global name in both of the function definitions, we are telling these
functions that a variable called name exists at a global level, and that they can see and modify this
variable.

In general, the global keyword should be used sparingly, since it wreaks havoc with the concept
of proper encapsulation for functions. In our Processing programs, we should mostly only use global
variables when dealing with event handlers like keyPressed() or mouseClicked(). The global
variables allows us to remember what happened as a result of user inputs, and we can then use this
information in other functions like draw().
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9 — Functions with Outputs

Learning Objectives

After studying this chapter, a student should be able to:

• describe the role of a function’s return value
• compose functions in Python that perform a subtask and return the result
• explain the role and behaviour of the return statement
• save the result of a function call to a variable
• use functions with return values in expressions
• trace program behaviour in and out of nested function calls

9.1 Functions That Compute Values
In Chapter 4, we introduced functions as a mechanism for supporting encapsulation. Functions
allow us to write an algorithm that solves a specific sub-problem, give that algorithm a name, and
henceforth keep the algorithm logically separate from the rest of a program. We provide inputs to
functions by passing arguments when we make function calls.

In this chapter, we’re going to learn how to write functions that have output as well. In a computer
program, function output always takes the form of data. A function with output typically calculates
some kind of result or answer, which it gives back whenever the function is called. An example of
such a function is Python’s max() function. max() takes numbers as inputs and gives us back the
single largest number from among its inputs, like so:⌥ ⌅
biggest_number = max(1, 4, 6)
print(biggest_number)⌃ ⇧
The program above prints the value 6 to the console, since 6 is the largest of the three values that
were given as inputs to max().
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We’ll come back to explaining how to use functions with outputs shortly. First, we’re going to
see how to return output when we write our own function definitions.

9.1.1 The Return Keyword
The return keyword is used to specify the output of a function. We write the keyword return
followed by an expression (remember, an expression can, but doesn’t have to, be a lone variable or
literal value); the value of the expression is the end result that your function is “sending back” to
wherever it was called from in your program.

For example, here is a function that calculates the area of a square and returns the answer.⌥ ⌅
def square_area(width ):

""" Returns the area of a square.

width: the length of the square ’s side """
return width * width⌃ ⇧

As you can see, the function body in the code above is one line (not including the docstring) that
returns the result of the expression width * width. Calculating the area of a square is pretty
straightforward, so there was nothing else we needed to do as part of the function’s body. But we
could have had any number of statements in between the function header and the return statement.

We will see later that functions may have more than one return statement1. As soon as a
return statement is executed, regardless of where it appears in the function, execution of the function
immediately ceases (even if there are lines of code after it!), the value of the accompanying expression
is returned, and execution of the program continues from the line immediately after the call that
invoked the function. For this reason, the return statement will usually be the last line in any function
that you write.

Returning Nothing
If a function does not need to return a value, then simply do not include a return statement. We’ve
been doing this already for all the functions that we’ve used prior to this chapter. If we’re being
really precise, a function without a return statement is formally called a procedure, but we’re not
going to worry about the formality regarding that definition in this class.

We can also return nothing by just using the word return all by itself on one line. We did this
when we needed an effectively empty function body for draw(). When Python executes such a
statement, it will immediately “jump” out of the function and back to wherever the function was
called from, but no value will be returned.

9.1.2 Return Statements Versus System Feedback
We mentioned back in Chapter 4 that drawing a line or printing text to the computer’s monitor
doesn’t count as “function output”. That’s because function output is done via the return keyword,
and we can only return data that way. “Make a red circle appear on the monitor” isn’t data2, it’s
a command. As such, there’s an important distinction between function output, which is just data
that the computer passes around to itself, and system feedback, which is the manipulation of the
computer’s peripheral devices in order to give information to a human user.

1Some programmers are of the opinion that writing functions with more than one return statement is bad style!
2Well, it could be string data, but then it’s just a sequence of characters, not an instruction to the computer to actually

do something.
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9.2 Functions as Expressions: Obtaining/Using a Function’s Return Value

Function calls can be used as expressions when the function being called returns data (i.e. yields data
in the form of function output). Like all other expressions, they have a value. The value of a function
call is the return value of the function, so therefore we can use these function calls anywhere that we
use values.

One of the most important things we can do with the value returned by a function call is to store
it in a variable. After all, computers don’t remember anything unless we tell them to, and what would
be the point of calculating some value only to immediately forget about it? We’ve already seen an
example of this, but here it is again:⌥ ⌅
biggest_number = max(1, 4, 6)
print(biggest_number)⌃ ⇧
The function max() returns the largest number from among its arguments. Because the result of the
function call is a value, we can put the function call itself on the right hand side of an assignment
statement. The resulting value will become associated with the variable biggest_number, which
we can then use however we like.

We can also use function calls as operands of an operator, like so:⌥ ⌅
sum_of_biggest = max(1, 5) + max(8, 10)
print(sum_of_biggest)⌃ ⇧
The code above will print the value 15 to the console. This is because assignment is the last operation
to occur in a Python statement; the expression to the right of the = sign gets completely evaluated
first. The first function call to max() produces the value 5, and the second call produces the value
10. 5 + 10 is 15, so this is the value that gets associated with the variable sum_of_biggest.

We can also use function calls as arguments to another function call. We’ll do that here with
the min() function, which is exactly the same as max() except that it returns the smallest of its
arguments rather than the biggest:⌥ ⌅
def draw ():

background (215)
line(0, 0, min(mouseX , 50), min(mouseY , 50))⌃ ⇧

In the code above, we’re using function calls to min() as the 3rd and 4th arguments to the line()
function. This will cause Processing to a draw a line from coodinate (0, 0) to wherever the mouse
is. However, if one of the mouse coordinates is higher than 50, the value 50 will be used instead
of the mouse’s actual location due to the min() function calls. This results in a program where the
user utilizes the mouse to draw a line starting from the top left corner of the canvas, but that line is
restricted to a 50x50 area.

9.2.1 More Built-In Python Functions

We conclude this section with a few examples of commonly used built-in Python functions.
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Name Number of
Arguments

Description and Example

max � 2 Returns the maximum value of all arguments. Accepts any number of
arguments.

biggest = max(10, 15, 42, 19)

min � 2 Works like max but returns the minimum value of all arguments. Accepts
any number of arguments.

len 1 Returns the number of characters in a string.

print(len(‘cookie ’))
6

type 1 Returns the data type of its argument.

print( type (5) )
<class ’int’>
print( type (2.3) )
<class ’float’>
print( type(’foo’) )
<class ’str’ >

int 1 Converts the argument to the integer data type (if possible) and returns
the result. Strings can be converted if they contain only digits 0–9.

x = int (42.0)
x = int(’42’)

float 1 Similar to int; converts the argument to the float-point data type (if
possible) and returns the result.

str 1 Similar to int; converts the argument to the string data type and returns
the result.

9.3 Nested Function Calls
There is no limit to the number of function definitions you can have in one program. And so long
as functions are only called after they are defined, there’s no limit to where or how many times
a function can be called. The consequence of this is that we can define some function A(), and
then define some function B() which, as part of its function body, includes a function call to A().
We could even then define a function C() which makes function calls to both A() and B() - even
though B() itself includes a function call to A()!! All of this is perfectly fine from the computer’s
perspective. The only thing that might make it a bit tricky for humans to follow is that we’re used to
reading text top-down and left-to-right3, when in fact that won’t be the order in which the statements
in our computer programs are executed once we start using multiple function calls.

3English-speakers are used to reading this way, in any case.
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Let’s illustrate this process through an example. Suppose we have the following program:⌥ ⌅
def A():

print(’A’)

def B():
print(’B’)
A()

def C():
print(’C’)
A()
B()

C()⌃ ⇧
The only statements in this program that actually do anything visible are the function calls to
print(), which just print the given text to the console one line at a time. Let’s unroll this program
and take a look at the order in which the print statements are actually going to happen when the
program is run.

The first thing that happens is a function call to C(), so we take a look at C()’s function body
and start executing the statements there one at a time. The first line there is print(‘C’), so a C will
appear on the console. The next line is a function call to A(), so the computer will look at A()’s
function body. There’s only one statement there, which is print(‘A’), so that’s the next thing that
will happen. After that, A()’s function body is finished, so we return to the middle of C()’s function
body, since that’s where we came from when A() was called. Next is a funciton call to B(). The first
statement in B() is print(‘B’), so that happens next, followed by a function call to A(). As before,
A() has only one statement, so print(‘A’) will be executed at this point. Then A() is finished, so
we return to where A() was called. B() doesn’t do anything else after calling A(), so we return to
where B() was first called in C()’s function body. C() doesn’t do anything either after calling B(),
so we return to where C() was called. There are no more lines of code after the function call to C(),
so the program is finished.

The following is a list of the order of print() statements from the example we just walked
through:⌥ ⌅
print(’C’)
print(’A’)
print(’B’)
print(’A’)⌃ ⇧

What would the order of execution of the print statements be from the previous program if we
swapped the lines B() and print(‘C’) within C()’s definition? We’ll leave that walkthrough to
you as an exercise (see the footnote here4 to check your answer).

4print(‘B’), print(‘A’), print(‘A’), print(‘C’) in that order
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10 — Libraries

Learning Objectives

After studying this chapter, a student should be able to:

• describe what a library is and why one would want to use one
• author Processing code that imports Processing libraries
• identify and author Processing programs that use library functions

10.1 Libraries
In a programming language, libraries are files that contain function definitions that add additional,
and much more powerful, features to the language. By default, most basic languages provide only
very fundamental building blocks for programs. Libraries are a way for people to share functions
that they have written so that other people can use them in their own programs. Viewed another way,
libraries contain abstractions of algorithms that we can use in our own programs without having to
understand how they work.

10.2 How to use libraries in Processing
Libraries are stored in separate files from our own programs. Thus, in order to use the functions
defined by a library, we have to tell our own program to look in those files and read those definitions.
Sometimes, we even have to first download the library files themselves from wherever they’re stored
on the internet. Fortunately, Processing provides us with an easy interface to do this.

On your Processing menu bar, under the ‘Sketch’ menu, you’ll see an ‘Import Library’ option.
That’s what we want. Hovering your mouse over it will bring up a sub-menu that shows a list of
items. The very top item in this list is the command “Add Library”; everything else in the list is the
name of a library that’s ready to be added to your program. If the library we want isn’t on that list,
we click on the “Add Library” option, which will then display a pop-up box that shows many, many
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different libraries. These are libraries that Processing knows how to find on the internet and can
download and install for you if you like. We’re going to use the “sound” library, which will let us use
sound files and other forms of audio feedback in our Processing programs. Once we’ve successfully
downloaded the “sound” library, it should now be included in the list of libraries under “Import
Library”. If we click on it, it should add a line that looks like this to the very top of our program.⌥ ⌅
add_library(’sound’)⌃ ⇧
The presence of that one line will allow us to use anything that’s in the “sound” library in our own
program. For example, let’s say we have a sound file (we’ll say it’s called “sample.mp3”) that we
would like to play every time our program starts. The very first thing we have to do is put the .mp3
file itself in the right place, so that our Processing program will be able to find it. We can do this in
Processing by once again accessing the “Sketch” menu and selecting “Show Sketch Folder”. In the
resulting folder, we need to create a new subdirectory called “data”. We can put our sample.mp3 file
in that “data” directory (indeed, any sort of sound or image data that our Processing programs might
need can go there). Once we’ve done that, we only need the following few lines of code to use the
sound file.⌥ ⌅
add_library(’sound’)

def setup ():
start_sound = SoundFile(this , "sample.mp3")
start_sound.play()

def draw ():
return⌃ ⇧

In the code above, we used two functions that came from the “sound” library. First, we called a
function called SoundFile(), which returned for us a piece of data that represents our sound file,
which we associated with the name start_sound. We then used the function play() to actually
play the sound.

Two things probably look odd to you about the code above. The first is that SoundFile() had
two arguments. The second argument, “sample.mp3”, is just the name of the sound file we want
to access, which you probably already guessed. But the first argument was simply the word this.
Explaining exactly why we need this word is well beyond the scope of CMPT140, but for now, it
suffices to say that you’ll often see it if we use library functions to deal with “complicated” things
like sound and video.

The second odd thing is that when we called play(), we put it right after the variable name
start_sound, joined by a period. We haven’t seen this way of calling functions before, so we’re
going to explore it in a bit more detail in the next section.

10.3 Objects and Methods
We learned earlier about atomic data, such as integers, floats and Booleans, which are the simplest
possible data types that exist in a programing language. We can have more complicated data types
as well, which we refer to collectively as objects. Objects are pieces of data that often (though not
always) represent a high-level concept of some kind. In our example from the previous section,
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we used the function SoundFile() to return a “sound object” that represents all the audio data
associated with our .mp3 sound file.

The reason we use objects is that they have a number of functions associated with them that let
us do some useful things. These are similar to the functions we already know about, but the syntax
for calling them is slightly different. Because of this different syntax, we use a different name for
them: methods. Methods are similar to functions in that they still accept arguments, and they still
sometimes, but not always, have a return value. The difference is that methods are always called
with respect to a particular object. You can think of a method call as “asking a particular object to do
something to itself.” Syntactically, we call a method by first using the name of a particular object,
followed by a period, followed by the method name and arguments (including parentheses). The
general form looks like this:⌥ ⌅
# general form for calling object methods
# assume my_object refers to an object of some kind
my_object.function_name(arguments ...)⌃ ⇧

So basically, objects are pieces of data that know how to do things to themselves. Atomic data
types, like integers and floats, aren’t objects, so they don’t know how to “do” anything (i.e. they
don’t have methods).

10.4 Finding Library Documentation
At this point, you may perhaps be wondering how one finds out about what libraries are out
there, or what methods are available to a particular object. The short answer is: internet search.
For example a search for “processing libraries” returns us a link https://processing.org/
reference/libraries/, where you can see a list of all the Processing libraries that the Processing
authors have documented.

While in general it can sometimes be hard to find documentation for libraries, and sometimes
the documentation that does exist isn’t as clear as you might like, rest assured that, for this course,
we’ll always tell you how to use a library function or object that we expect you to use, or at least tell
you exactly where the documentation is.

https://processing.org/reference/libraries/
https://processing.org/reference/libraries/
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11 — Conditional Branching

Learning Objectives

After studying this chapter, a student should be able to:

• identify and define the behaviour of relational operators, logical operators, and Boolean
expressions in Python

• identify and author correct Python language syntax for branching statements: if, if-else,
if-elif-else, and chained statements

• design and author Python programs that use if, if-else, nested if, and chained-if state-
ments

Way back in Chapter 1, we introduced the idea of control statements, which are statements in an
algorithm that tell us under what conditions certain other actions should be carried out. For example,
the following plain English algorithm uses a control statement:⌥ ⌅
try turning doorknob
if the door is locked:

insert key into lock
turn key
remove key from lock

turn knob and open door⌃ ⇧
The algorithm accommodates for different situations by allowing whoever is following the algorithm
to act differently based on their circumstances. We, the algorithm writers, do not know in advance
whether our audience for this algorithm will be dealing with locked or unlocked doors, so we write
the algorithm such that it can handle either case. This is called conditional branching, because
depending on certain conditions, different branches of the algorithm will be followed when it is
executed.

In this chapter, we will learn how to use conditional branching in Python.
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11.1 Conditions
A condition is an expression that evaluates to one of two values: True or False. You may recall
from Chapter 7 that we mentioned the Boolean data type; that’s the type of data needed to evaluate a
conditional statement.

The absolute simplest form of condition is just a literal Boolean value all by itself. But if that’s
all we had, we couldn’t write very interesting or useful conditions. So we’re going to introduce some
operators that we can use to build expressions that produce Boolean values and are therefore suitable
for use as conditions.

11.1.1 Relational Operators
A relational operator checks whether its operands satisfy a specified relationship and produces a
Boolean value based on its assessment. Put another way, relational operators are a method of asking
simple “true or false” questions about data. For example, the value of the expression 2 < 4 is True.
This is because the < operator is the “less than” operator. The expression x < y has the value True
if the value of x is smaller than the value of y and False otherwise. The following table lists several
commonly used Boolean operators in Python.

Operator Meaning Example Result
== are the operands equal? 42 == 42 True
!= are the operands unequal? 42 != 42 False
< is the first operand smaller than the second

operand?
10 < 42 True

> is the first operand larger than the second operand? ’Bill’ > ’Lenny’ False
<= is the first operand less than or equal to the second? 42 <= 42 True
>= is the first operand greater than or equal to the

second?
’R’ >= ’Z’ False

Notice how the operators work with non-numeric data as well, like strings and characters. In such
cases the comparison is made lexicographically (dictionary ordering). ’Bill’ is not greater than
’Lenny’ because ’Bill’ comes before ’Lenny’ in dictionary ordering. For the same reason, the
expression ’Bill’ < ’Lenny’ has the value True.

Relational operators all have the same precedence and are evaluated from left-to-right. But all
relational operators have a lower precedence than all arithmetic operators, which means arithmetic
operators get evaluated first. Thus, the expression 5 + 5 < 10 is False because the addition
happens first, resulting in the value 10. Since 10 is not less than 10, the < operator evaluates to
False. Of course, we can always use parentheses to either force a particular ordering, or just to
make the default ordering very clear. So (5 + 5) < 10 is a perfectly valid expression, and still
produces the value False.

11.1.2 Logical Operators
Logical operators (also called Boolean operators) are operators that act only on Boolean values. You
can think of them as the Boolean equivalent to arithmetic operators, like addition or multiplication.
The three logical operators are and, or, and not. Notice that these operators are just English words
and not special symbols of any kind. This isn’t true in all programming languages, but it is true in
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Python. We can use logical operators to combine Boolean values to get new Boolean values, just
like arithmetic operators let us combine numbers to get new numbers.

All logical operators have a lower precedence than relational operators. So that means that
logical operators always get evaluated after relational operators.

The and Operator
The expression x and y has a value of True only if both x and y are True. In all other cases, such an
expression has a value of False. Remember that x and y could be Boolean literals, Boolean values,
Boolean expressions, or even a function call that returns a Boolean value. Here are some examples:

Expression Value
1 - 1 > 0 and -2 > 0 False
False and ’x’ < ’y’ False
5 < 10 and 20 != 42 True
len(’Skywalker’) > 0 and len(’Skywalker’) < 10 and ’Ren’ < ’Rey’ True

Note the order of operations in the first example. The subtraction happens first, because it has
higher precedence than all relational and logical operators. Then the two greater-than operators are
evaluated because relational operators have higher precedence than logical operators. The last thing
that happens is the and operator. Since both > operators result in False, the entire expression is
False.

In the last example, the two and operators are evaluated left-to-right (recall that len() returns
the length of a string). The result of the first and is True, which becomes the first operand to the
second and, then True and ’Ren’ < ’Rey’ evaluates to True, so the whole expression evaluates
to True.

The or Operator
The expression x or y has a value of False only if both x and y are False. In all other cases, such
an expression has a value of True. Here are some examples of expressions using or:

Expression Value
5 < 7 or 0 == 0 True
7 < 5 or 0 == 0 True
2**5 < 16 or max(7, 42) == 7 False

The not Operator
The not operator is a unary operator. It only takes one operand. The expression not x has a value
of True only if x is False; it has a value of False if x is True. So not changes the Boolean value
of its operand to the other Boolean value. Here are some examples:

Expression Value
not 42 < 0 True
not 6 == 6 False
not max(17, 50) > 80 True
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In the last example, the function call max has the highest precedence; it returns 50. The next highest
precedence is the > operator (relational operators have higher precedence than logical operators),
which results in False since 50 is not greater than 80, then not False results in True.

Mixing Logical Operators

We don’t want you to get the idea that you can only use one kind of logical operator per expression.
You can mix them up as much as you like, but take care — the logical operators do not have the
same precedence! The operator not has higher precedence than and which, in turn, has higher
precedence than or. Take a look at these expressions:

Expression Value
not 5 < 7 or 0 == 0 True
not (5 < 7 or 0 == 0) False
len(’Vader’) < 7 or len(’Maul’) < 3 and ’Vader’ < ’Maul’ True
(len(’Vader’) < 7 or len(’Maul’) < 3) and ’Vader’ < ’Maul’ False

You might expect the first expression to have a value of False, because 5 < 7 or 0 == 0 is
clearly True, and the not would change that to False. But the not operator has higher precedence
than or. In this expression, the relational operators evaluate first, giving us not True or True.
Now the not is applied to the first True, giving us False or True, which ends up as True. If
we really want to apply not to the result of the or, we have to add parentheses, like in the second
example. The relational operators still evaluate first, again giving us not (True or True). But
now, because of the parentheses, the or evaluates next, which gives us not True, and ultimately
False.

Note how in the third and fourth examples, if we want the or to evaluate before the and we have
to use parentheses around the or expression. You can see that it matters because we get different
answers depending on which of or or and evaluates first.

Variables in Relational and Logical Expressions

We also don’t want you to get the idea that you can’t use variables with these operators. In fact,
in practice, most useful expressions will involve variables. There’s very little point in writing a
program that contains an expression for which you, the programmer, already know the value ahead
of time, because you could just substitute that value for the whole expression yourself! In any of the
examples above where a literal appears in an expression, we could replace the literal with a variable.
For example, a < b and c < d is valid. We just can’t evaluate this expression without knowing
the values of the variables. Here’s a complete example where we associate the variable names with
values and use them in a Boolean expression:⌥ ⌅
a = 1
b = 5
c = 2
d = 4
print( a < b and c < d )⌃ ⇧
The program above will print the value True to the console.
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11.2 Branching and Conditional Statements
Now that we know how to ask questions about data using Boolean expressions, we can use the
values of Boolean expressions to get our programs to perform different actions under different
circumstances. This is called branching and it allows us to perform one block of code if a Boolean
expression is True, and a different one if it is False.

In Python, we perform branching using a conditional statement or if-statement. The syntax is the
keyword if, followed by a Boolean expression (the condition), followed by a colon, like this:

if condition:

The if-statement is then followed by a block (a series of indented lines of code — just like a function
body). The block of code following the if-statement is only executed if the condition evaluates to
True. Let’s look at an example:⌥ ⌅
radius = 10

def setup ():
size (300, 300)

def keyPressed ():
global radius
if key == "+":

radius = radius + 5

def draw ():
global radius
ellipse (150, 150, radius , radius)⌃ ⇧

Listing 11.1: A program that uses a conditional statement.

This program draws a circle in the middle of the canvas. By default, this circle is quite small; we use
global variable radius to represent the circle’s radius, and initially this is set to 10. The conditional
statement is in the keyPressed() function. Recall that this is an event handler that is automatically
called whenever any key on the keyboard is pressed.

You may also recall the special variable key: Processing set this variable up for us to hold the
value of the most recently pressed key. In this case, we use an if-statement to check if the + key
was pressed. If it was, we increase the value of radius by 5. If any other key was pressed, then the
value of the expression key == "+" is False, and so we will skip changing the value of radius
and do nothing. The end result of this is that the circle on the screen gets bigger every time the + key
is pressed.

So what if we wanted to make our program a little more user-friendly by adding a message that
tells the user what to do if they’re hitting the wrong key? It might be natural to try this:
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⌥ ⌅
radius = 10

def setup ():
size (300, 300)

def keyPressed ():
global radius
if key == "+":

radius = radius + 5

print("Hit + to increase size")

def draw ():
global radius
ellipse (150, 150, radius , radius)⌃ ⇧

Listing 11.2: A program that uses a simple conditional statement.

However, this doesn’t quite do what we want. The call to print() executes regardless of the value
of the Boolean expression in the if-statement since the call is outside of the if-statement’s code block.
In other words, even if the user is doing the right thing, our program will still present them with a
message telling them what to do!

What we need is a way of specifying a second block that gets executed only if the Boolean
expression in the if-statement evaluates to False. We can do this using an else-statement. An
else-statement is the word else followed by a colon. It is written after the if-statement and its block
of code:⌥ ⌅
radius = 10

def setup ():
size (300, 300)

def keyPressed ():
global radius
if key == "+":

radius = radius + 5
else:

print("Hit + to increase size")

def draw ():
global radius
ellipse (150, 150, radius , radius)⌃ ⇧

Listing 11.3: A program that uses an if-else statement.

Now, if the user hits the + key, the program will increase the circle’s radius. Otherwise, it will
execute the else statement’s block of code, which prints instructions to the console. In general, the
flow of execution for conditional statements looks like this:
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if
condition

execute
"if" block

execute
"else" block

code after
"else" block

True False

⌥ ⌅
if condition:

# if block (indented)
else:

# else block (indented)

# code after else block⌃ ⇧

Suppose we want to add functionality to the code which decreases the size of the circle whenever
the user presses the - key. Here’s one way we could do that:⌥ ⌅
radius = 10

def setup ():
size (300, 300)

def keyPressed ():
global radius
if key == "+":

radius = radius + 5

if key == "-":
radius = radius - 5

def draw ():
global radius
ellipse (150, 150, radius , radius)⌃ ⇧

Listing 11.4: A program that uses an if-else statement.

Python, like most other programming languages, gives us a cleaner way to handle multiple conditions
intended to be mutually exclusive (i.e. when we want exactly one branch of many to be executed). In
Python, there is an elif-statement (“elif” is short for “else if”). An elif-statement consists of the word
“elif”, followed by a Boolean expression, followed by a colon, followed by a block of statements to
execute if the Boolean expression is True. An elif-statement can appear after the block associated
with an if-statement or another elif-statement, but is only executed if the preceding if-statement or
elif-statement was found to be False.

Here’s a different way we can write our program, where we combine shrinking the circle with
the - key and printing out instructions if any key other than + or - is pressed:
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⌥ ⌅
radius = 10

def setup ():
size (300, 300)

def keyPressed ():
global radius
if key == "+":

radius = radius + 5
elif key == "-":

radius = radius - 5
else:

print("Hit + to increase size")
print("Hit - to decrease size")

def draw ():
global radius
ellipse (150, 150, radius , radius)⌃ ⇧

Note that only one of the three blocks is executed. As soon as an if-statement or elif- statement
is found to be True, its block is executed and no more conditional statements are tested. Thus, no
more of the blocks can execute — even if more than one of the conditions are actually true! So when
you’re using elif, be aware that the order of the conditions can potentially impact your code in
a different way than you envisioned. The final else block only executes if none of the preceding
conditions are True.

Multiple elif-statements and accompanying blocks are allowed as long as the first conditional
statement is an if-statement. In all cases, the else statement is optional. Once any one of the
conditional statements’ blocks executes, the program continues at the first line of code following the
else block. The flow of execution in an if-elif-else chain is described by the following flowchart and
code template:
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if
condition:

elif
condition:

elif
condition:

...

else block
(optional)

code after
the else
block

execute
block #1

execute
block #2

execute
block #3

True

True

True

False

False

False
more elif’s as desired

⌥ ⌅
if condition:

# block 1 (indented)

elif condition:
# block 2 (indented)

elif condition:
# block 3 (indented)

# ... more elif’s as desired

else: # (optional)

# else block

# code after the else block⌃ ⇧

Once again, notice that only one of the blocks in the if-elif-elif-...-else chain can execute no matter
how many elif-statements there are.
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12 — Repetition

Learning Objectives

After studying this chapter, a student should be able to:

• identify and correctly author Python language syntax for repetition: while loops and
for loops

• trace by hand the flow of program execution for programs that use while-loops and
for-loops

• design and author Python programs that use one or more loops
• describe what is an infinite loop

Very frequently in computer programming we would like to repeat certain actions. Sometimes
we want to repeat these actions a specific number of times: for example, drawing 1000 circles on
the screen. Other times, we want to repeat some actions as long as some specified condition (i.e.
Boolean expression) is True: for example, keep asking for a password until it is entered correctly.
Sometimes we’d like to repeat some action(s) for every element of data in some collection of data
elements: for example, for every student’s grade in CMPT 140, give a 5% bonus1. In Python, we
can do all of these things using loops.

12.1 Repetition in Processing
With Processing, we’ve actually been using repetition in many of our programs. The draw() function
itself is an example of repetition: it gets called again and again so long as our interactive program
is running. But we, as programmers, don’t really have a lot of control over how or when that
repetition happens (although we did learn how to change the frame-rate), because Processing does it
automatically for us. In this chapter, we’ll learn how to use more general purpose repetition in our
programs.

1You wish!
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12.2 While-Loops
A while-loop is a type of loop whereby a block of code executes repeatedly so long as a given
condition is True. While-loops work a lot like an if-statement in that they have very similar syntax
— a condition followed by a block—but the block can be executed multiple times instead of just
once. While-loops consist of the keyword while, followed by a Boolean expression (the loop
condition), followed by a colon, followed by a block of code. Below you can see the general form of
a while-loop, and the corresponding flow of execution presented as a flowchart.

while
condition:

execute
block

code
after the

while-loop

code before
while-loop

True

False

⌥ ⌅
# code before while -loop

while condition:
# block (indented)

# code after the while -loop⌃ ⇧

When execution of code reaches a while-loop, the loop’s condition is evaluated. The condition must
be a Boolean expression yielding a result of True or False. If the condition is True, the block of
code following the while-loop’s condition is repeated until the condition becomes False. Then
the (unindented) code after the while-loop executes. Note that it is possible that the loop condition
is False the first time it is encountered. If this is the case, then the block is never executed, and
execution proceeds to the code after the while-loop.

The following example uses a while-loop to draw a trail of small circles up to the edge of the
canvas.⌥ ⌅
# the variable width gives us the current width of the canvas
x_position = width /2

while x_position < width:
ellipse(x_position , 50, 10, 10)
x_position = x_position + 10⌃ ⇧

In the code above, the variable x_position is used to keep track of the x-coordinate of the circle
we are currently drawing. Inside the while-loop, we draw a circle whose centre is at the current
x_position, and then increase x_position by 10, so that the next circle we draw will be slightly
further to the right. We keep doing this so long as the x_position is still on the screen.

12.2.1 While Loops for Counting
While loops can also be used to execute a block of code a pre-determined number of times. These are
called counting loops because an integer variable is used to count the number of times the block has
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executed, and the loop condition is such that the condition is True as long as the loop has executed
fewer than the required number of times. The following example uses a while-loop to draw 10
progressively smaller circles inside one another:⌥ ⌅
def setup ():

size (200, 200)

def draw ():

size = 100

count = 0

while (count < 10):

ellipse (100, 100, size , size)

size = size - 10

count = count + 1⌃ ⇧
In this example, we use two variables that are repeatedly updated in the body of the loop. The size
variable keeps track of the size of the circle diameter we are drawing. The first time the loop is
executed we draw a circle of diameter 100, but the diameter of each circle will get smaller and
smaller with each iteration. The count variable is simply used to keep track of how many circles
have been drawn; so long as count is less than 10, we will keep drawing more circles. Every time
we draw a circle, we increase count by one, thus the count = count + 1 statement on the last
line of the loop’s body.

Don’t forget to update counter variables within loops; it is a common error that often leads to
infinite loops (we will come back to those shortly).

12.3 For-Loops
A for-loop is another kind of loop in Python that conveniently allows us to do something to each item
in a sequence. You might recall from Chapter 7 that strings are a compound data type comprised of a
sequence of characters. A for-loop makes it very easy for us to access those characters, one at a time,
and do something with each one before moving on to the next character.

For example, say we wanted to display all of the characters in a string in a diagonal line on the
canvas. The following program would do just that:⌥ ⌅
word = "COOKIE"
x = 10
y = 10
for letter in word:

text(letter , x, y)
x = x + 10
y = y + 10⌃ ⇧

The block following the for-loop is executed once for each character in the string word; each time
the block is repeated, the variable letter refers to the next character in the string.

In general, the syntax of a for-loop consists of the word for, followed by a variable name,
followed by the keyword in, followed by a sequence, followed by a colon, followed by a block:
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⌥ ⌅
for variable in sequence:

# Block of code -- each time this block is repeated ,
# variable refers to the next item in the sequence.
# Repetition stops after each item in the sequence has
# been processed.⌃ ⇧

When we do something for each element of a sequence, we say that we are iterating over the
sequence.

12.3.1 Sequences
You may have noticed that in our discussion on for-loops, the word sequence has shown up quite
a bit. In Python, a sequence is a compound data-type that consists of several pieces of data in a
particular order. In a way, you can think of a sequence as a sort of “super data-type” that describes
several other compound data-types. Strings are an example of a sequence, because in a string, the
order of characters is important. “cat” and “tac” are not the same string, even though they contain
the same letters. So all strings are sequences. But not all sequences are strings, as we shall presently.

12.3.2 Ranges and Counting For-Loops
We can use for-loops to create counting loops just like we did with while-loops. To do so, we first
need to learn about a new kind of sequence called a range.

A range is a sequence of integers that begins at an integer a (the start), ends before an integer b
(the stop), and in which the difference between each element in the sequence, called the step size, is
equal. For example, the range starting at 1 that stops at 5 and has a step size of 1 is comprised of the
sequence of integers 1, 2, 3, 4. Ranges are created with Python’s built-in range() function. The
range function requires two arguments, start and stop, and can optionally accept a third argument
for the step size which, if not given, defaults to 1. You may also provide just a single argument to
range; range(x) is equivalent to range(0, x, 1), and is the sequence 0,1,2, . . . ,x�1. Here are
some example ranges:⌥ ⌅
range (0,5,1) # the sequence 0, 1, 2, 3, 4
range (5) # the sequence 0, 1, 2, 3, 4
range(-4, 4) # the sequence -4, -3, -2, -1, 0, 1, 2, 3
range(0, 11, 2) # the sequence 0, 2, 4, 6, 8, 10
range(2, -3, -1) # the sequence 2, 1, 0, -1, -2
range(0, 5, 10) # the sequence 0

# General form:
range(start, stop, step_size)⌃ ⇧
Remember: the value stop is not part of the sequence.

Ranges can be used to write counting for-loops. Here is a for-loop that repeats its block exactly
N times:⌥ ⌅
for i in range(N):

# do something⌃ ⇧
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In this loop, i refers to the value 0 on the first repetition, 1 on the second repetition, and so on, up to
N-1 on the last repetition. It is equivalent to the following while-loop:⌥ ⌅
i = 0
while i < N;

# do something
i = i + 1⌃ ⇧

12.4 Choosing the Right Kind of Loop
Generally, for-loops are what you want to use to iterate over a sequence. Both for-loops and
while-loops are appropriate for simple counting loops. You may prefer using for-loops with ranges
for counting purposes because it requires less typing than the equivalent while-loop. For most
other non-counting loops that have complicated loop conditions and/or don’t involve iterating over
sequences, while-loops are likely the best choice.

12.5 Infinite Loops
Infinite loops are loops that repeat forever, and they can sometimes be the worst enemy of the novice
programmer. That’s because infinite loops can make it look like your program is doing nothing,
when in fact the real problem is that your program is effectively running uselessly in circles! A
while-loop whose loop condition can never become False is an infinite loop. Here is an example:⌥ ⌅
x = 10
while (x < 100):

ellipse(x, x, 10, 10)⌃ ⇧
The intent for this program is to draw a diagonal line of circles across the canvas. But in the body
of the loop, we forgot to include any kind of statement that changes x. Since x is initialized with a
value of 10 that doesn’t change, the loop condition x < 100 will always be True. If you try running
this program, it won’t actually draw anything on the screen because the program gets stuck in an
infinite loop. The only thing we can do is click on Processing’s “stop” button, which will stop the
program from running. If you ever find yourself mystified by the behaviour of a program that you
write, where the program seems to simply refuse to do what you tell it to, be weary that an infinite
loop may be the culprit.
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13 — Nesting Programming Constructs

Learning Objectives

After studying this chapter, a student should be able to:

• trace behaviour for programs using nested if-statements
• trace behaviour for programs using nested loops
• trace behaviour for programs using nested loops and if-statements combined
• author Python code using nested if-statements, loops, and combinations thereof

So far, we’ve learned about two types of control statements: conditionals (involving the keywords
if, elif and else) and loops (involving the keywords while and for). Both of these types of
control statements have the same basic structure: the control statement appears first, followed by
an indented block of code. The block of code below the control statement consists of one or more
valid Python statements. There are no restrictions on the sorts of statements that can go in the block,
so naturally, the block can include additional control statements. We can have if-statements inside
loops and loops inside if-statements in any combination you can imagine. This concept of including
control statements within control statements is known as nesting.

In this chapter, we’re not going to present any new information. We’ll just look at several
examples of programs that combine conditionals and loops in different ways.

13.1 Nesting If-Statements
Here’s a simple example of using an if-statement inside another if-statement:
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⌥ ⌅
# assume first_name and last_name are variables
# that have already been given values

if last_name == "Monster":
print("Welcome home , Mr. Monster.")
if first_name == "Cookie":

print("Would you like a cookie?")⌃ ⇧
Notice that the second if-statement is part of the block associated with the first if-statement (because
it is indented). The line print("Would you like a cookie?") is indented again, because it is
associated with the second if-statement. As a result, if last_name has the value "Monster" and
first_name has the value "Cookie", then both print() statements will be executed when the
program is run. If last_name has the value "Monster" and first_name has some value other
than "Cookie", then the first print() statement ("Welcome home, Mr. Monster.") will be
executed, but the second will not.

So what happens if last_name isn’t set to "Monster" but first_name is set to "Cookie"? In
such a case, neither print() statement will be executed. Recall the behaviour of an if-statement:
if the if-statement’s condition is False, then the entire block associated with the if-statement is
skipped over. Since the second if-statement is part of the block that is being skipped, the fact that its
associated condition happens to be True is irrelevant; the computer won’t even check.

When we combine nested if-statements with else (or elif) statements, paying attention to
indentation becomes very important. Consider the following two programs:⌥ ⌅
if last_name == "Monster":

print("Welcome home , Mr. Monster.")
if first_name == "Cookie":

print("Would you like a cookie?")
else:

print("There ’s a burglar! Protect the cookies!")⌃ ⇧
Listing 13.1: The else-statement is associated with the first if-statement⌥ ⌅

if last_name == "Monster":
print("Welcome home , Mr. Monster.")
if first_name == "Cookie":

print("Would you like a cookie?")
else:

print("There’s a burglar! Protect the cookies!")⌃ ⇧
Listing 13.2: The else-statement is associated with the second if-statement

The programs are identical except for the indentation of the else statement and its associated block.
For listing 13.1, the program will declare there is a burglar whenever last_name is not equal to
"Monster", regardless of the value of first_name. That’s because the else is at the same level of
indentation as the first if-statement, indicating that the else is associated with the first if-statement.
In listing 13.2, the else is associated (via indentation) with the second if-statement. Thus, the
program outlined in 13.2 will only report a burglar when last_name is equal to "Monster", but
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first_name is not equal to "Cookie". If last_name is not equal to "Monster", then the program
won’t print anything to the screen.

13.2 Nesting Loops
Loops that contain other loops are a common and useful tool in computer science. The key thing to
keep in mind here is that any loop(s) on the inside of another loop will execute completely for every
single iteration of the ‘outer’ loop!

Let’s consider an example. Suppose we want to print out all pairs of 26 letters in the English
alphabet, i.e. (aa, ab, ac...az, ba, bb, bc...zy, zz). If we manually write out every pairing’s print()
statement, we would need 262 = 676 print() statements. We don’t want to do that! Using nested
loops, we can get the job done in just a few lines of code:⌥ ⌅
alphabet = "abcdefghijklmnopqrstuvwxyz"
for letter1 in alphabet:

for letter2 in alphabet:
pair = letter1 + letter2
print(pair)⌃ ⇧

We know from the length of the alphabet string that the first (outer) for-loop will execute exactly
26 times. During the first iteration of the loop, letter1 will be set to a. Then we enter the second
(inner) for-loop and iterate through it. The variable letter2 will also cycle through all 26 letters
of alphabet. For each letter2, we concatenate it together with letter1 and print the resulting
string to the console. This all happens during the first iteration of the outer loop, so letter1 doesn’t
change! Once the inner loop finishes its 26 iterations, we hit the end of the outer loop for the first
time, at which point letter1 becomes b for the next iteration. The entire inner loop will then
repeat again, with the only difference being that letter1 is now b instead of a. The inner loop
will continue to repeat its iterations until the outer loop is done cycling through its iteration of
alphabet’s characters.

13.3 Nesting If-Statements and Loops
We can combine any number of if-statements and loops in any order that we like. Consider the
following program, which prints out appropriately timed messages for a rocket lift-off:⌥ ⌅
for countdown in range(10, 0, -1):

print(countdown)
if countdown == 8:

print("Heating up!")
elif countdown == 4:

print("Ignition!")
elif countdown == 1:

print("BLAST OFF!")⌃ ⇧
For each iteration of the for-loop, the countdown variable refers to a different value (starts at 10 and
counts down to 1). No matter what its value, countdown is printed to the console with each iteration.
Then, depending on the value that countdown has for a particular iteration, an additional message
may be printed as well.



88 Nesting Programming Constructs

In this next example, we have two different loops under two different branches of a conditional
statement:⌥ ⌅
# Assume count_up has already been given a Boolean value
if count_up:

print("Counting up!")
for i in range(1, 11):

print(i)
else:

print("Counting down!")
for i in range (10, 0, -1):

print(i)⌃ ⇧
Here, because we used an if/else structure, only one of the two loops will ever be executed. If the
count_up variable is True, the program will print Counting up! and display the numbers from 1
to 10 in ascending order. If instead count_up is False, the upward-counting block won’t even be
examined and instead the program will print Counting down! and display the numbers from 10 to
1 in descending order.

13.4 Multiple Layers of Nesting
There’s no limit as to how deeply we can nest our programming constructs. For example, we can
extend our alphabet-printing program from earlier to print as many letter combinations as we like just
by adding extra loops. This version prints out all possible quadruplets of letters from the alphabet:⌥ ⌅
alphabet = "abcdefghijklmnopqrstuvwxyz"
for l1 in alphabet:

for l2 in alphabet:
for l3 in alphabet:

for l4 in alphabet:
quadruplet = l1 + l2 + l3 + l4
print(quadruplet)⌃ ⇧

Sometimes, multiple layers of nesting can be replaced by using a single Boolean expression. The
following two programs are an example of this. They have the exact same behaviour, but program
13.3 uses multiple nested if-statements, while program 13.4 uses a single if-statement with the
conditions from 13.3’s nested-if statements expressed as a single Boolean expression.⌥ ⌅
if first == "Alistair":

if middle == "Cookie":
if last == "Monster":

print("Welcome , Master Cookie!")⌃ ⇧
Listing 13.3: Program using multiple nested if-statements⌥ ⌅

if first=="Alistair"and middle =="Cookie" and last=="Monster":
print("Welcome , Master Cookie!")⌃ ⇧

Listing 13.4: Program using single if-statement with longer Boolean expression
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In this case, neither of these programs are necessarily more “correct” than the other; it’s a matter of
which one is easier for a human reader to understand. The point, for now, is simply to show that in a
programming language, just as in a natural language, there are often many ways to express the same
idea.





Lists
Creating Lists
Accessing List Items
Modifying List Items
Determining if a List Contains a Specific
Item

List Methods
Adding Items to a List
Removing Items from a List
Finding an Item’s Offset
Popping an Item from a List
Sorting the Items in a List
Copying Lists
Concatenation

Functions with Lists as Arguments
Iterating Over the Items of a List

14 — Lists

Learning Objectives

After studying this chapter, a student should be able to:

• describe what a list is
• create lists in Python
• access and manipulate the items in a list in Python
• employ simple slicing on lists
• write Python programs that use lists to store data

14.1 Lists

A list is a compound data type consisting of a set of data items arranged in a specific linear
ordering. We first mentioned lists, along with the notion of a compound data type, back in Chapter 7.
Conceptually, lists in Python share many properties with the informal, plain language notion of a list
that you’re familiar with from everyday life. For example, suppose we had a grocery list, and on that
list were the following items:⌥ ⌅
flour
butter
brown sugar
white sugar
eggs
vanilla
baking soda
chocolate chips⌃ ⇧
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There are a number of things we could say about such a list. For example, we could say that “there
are eight items on the list.” We could also refer to the items on the list with regard to their ordering.
For example, we could say “the first item on the list is flour,” and “the third item on the list is brown
sugar.”

Lists in Python are formalized, but all of the same concepts apply. In this chapter, we’ll learn
how to use lists in our programs.

14.1.1 Creating Lists

In order to use lists, we first have to learn how to construct one so that we have a list to interact with.
One way of creating a list is by writing a list literal. To do that, we’re going to use a new type of
bracket that we haven’t used before: square brackets. A pair of matching square brackets tells Python
that you are creating a list. The contents of the list go in-between the brackets, separated by commas.
Of course, lists are themselves data, so typically when you create a list literal, you’ll associate it with
a variable name so that you can refer to the list by that name. Here are several examples:⌥ ⌅
# a list of some prime numbers
x = [2, 3, 5, 7, 11]

# a list of video game titles
y = [’Super Mario Bros’, ’Civilization ’, ’Bionic Commando ’]

# a list containing different types of data
z = [’Ultimate Answer ’, 42.0, 6*9]⌃ ⇧

The multiplication of a list and an integer works the same way as multiplication of integers and
strings, so we can create a list of n copies of a value by first creating a list that contains only that one
value, and then multiplying it by n:⌥ ⌅
n = 10;

# create a list of n zeros:

zeros = [0] * n

# create a list of n empty strings:

empty_strings = [’’] * n

print(zeros) # this prints [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

print(empty_strings) # guess what this will print , then try it.⌃ ⇧
Creating a list of n copies of a value is useful when you want to create a list of initial values and then
modify those initial values later in the course of a task.

Finally, another common thing you might want to do is create a completely empty list. This is
similar to grabbing a blank sheet of paper on which you plan to write a grocery list. The syntax for
writing an empty list is just two matching square brackets without any items in-between, like this:⌥ ⌅
# create an empty list
grocery_list = [ ]⌃ ⇧
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14.1.2 Accessing List Items
The whole purpose of a list is to store multiple data items. But in order to examine or modify those
items, we still need to be able to access them individually. One way to do this is by using the item’s
offset. An item’s offset is simply its position in the list. The first item in a list has an offset of 0 —
not 1, but 0. Computer scientists start their counting from 0. It can take a little bit of getting used to.
In any case, that means that the second item in the list has an offset of 1, the third item has an offset
of 2, and so on. If there are n items in the list, then the final element has offset n�1 (because we
started counting at 0!). To access a particular item in a list, we use the name of the list followed by
a pair of square brackets. Inside those brackets, we put the offset of the item we want. Here’s an
example:⌥ ⌅
alphabet = ["A", "B", "C", "D", "E"]
print(alphabet [2])⌃ ⇧
The code above would print out the element of alphabet at offset 2, which is the value C.

If you attempt to access an item at an offset that does not exist, Python will issue an error1. Also,
offsets must be integers. You cannot use a float as a list offset, even if the float happens to be a
whole number. Here are some examples of erroneous code:⌥ ⌅
alphabet = ["A", "B", "C", "D", "E"]

print(alphabet [5])
# can’t do this! The last valid offset is 4

print(alphabet [1.0])
# can’t do this! The offset must be an integer

print(alphabet[int (1.0)])
# this is ok. The int() function will convert 1.0 to 1⌃ ⇧
Slicing: Accessing Parts of a List
What if you have a list and want to make a new list that contains only some of the data from the
original list? Python gives us a very easy way to do that. Once again, we’ll use square brackets, but
instead of having a single offset inside the brackets, we’ll have two offsets (separated by a colon).
This tells Python “make me a new list with all the data from in-between those two offsets.” This
process is called slicing. It looks like this:⌥ ⌅
alphabet = ["A", "B", "C", "D", "E"]
abc = alphabet [0:3]⌃ ⇧
After the two statements above, the list abc will contain data values ["A", "B", "C"]. The only
tricky thing to note here is that although we specified the offset range [0:3], the data item at offset 3
from the original list ("D") didn’t get included in the new list. In other words, the range of offsets that
you specify for slicing is inclusive on the lower end and exclusive on the upper end. This manner of
describing a range of values (including the start but excluding the end) is standard throughout the

1This is very handy! There are languages that will NOT issue an error when you do this, which can wreck your
program in unpredictable ways
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Python language, as we already saw with the range() function that we used for for-loops in chapter
12.

14.1.3 Modifying List Items
We can also modify the items in a list individually. This means that we can change the value at a
particular list offset without affecting any of the other items in the list or creating a brand new list.
Doing so uses the same basic syntax as variable assignment:⌥ ⌅
alphabet = ["A", "B", "C", "D", "E"]

alphabet [2] = "X"⌃ ⇧
After executing the code above, the content of alphabet contains ["A", "B", "X", "D", "E"].
Only the third element was changed. What happened to the "C" that used to be in third position of
the list? It’s just gone. Coming back to our analogy of a physical grocery list, it’s like we crossed out
the third item on the list and wrote something else in its place.

14.1.4 Determining if a List Contains a Specific Item
We can check whether a specific data value exists anywhere in a list using the Python keyword in.
We’ve already seen this word before in Chapter 12 when talking about for-loops. Here, we will use
the keyword in a slightly different way.

In the context of lists, we use in as an operator that produces a Boolean value. The in operator
requires that its left operand is an expression, and its right operand is a list. It evaluates to True only
if the value of the left operand is an item in the given list:⌥ ⌅
classlist = ["Bert", "Ernie", "Cookie", "Big Bird"]

if "Ernie" in classlist:

print("Ernie is here!")⌃ ⇧
So long as the string value "Ernie" is anywhere in the list classlist, then the expression "Ernie"
in classlist evaluates to True.

We can also use not in to check whether an item is NOT in a list. It uses the exact same syntax
as with in (only with a preceding not this time) and does pretty much what you might expect it to:⌥ ⌅
classlist = ["Bert", "Ernie", "Cookie", "Big Bird"]

if "Cookie" not in classlist:

print("Cookie ’s skipping class! Call his parents !!!")⌃ ⇧
In the example above, the print() statement will not in fact be executed, since in this case "Cookie"
not in classlist evaluates to False (as "Cookie" is, indeed, in the list).

14.2 List Methods
In Chapter 10, we introduced the notion of objects, which are pieces of data have special functions
called methods. As a reminder, here is the basic syntax for a method call.⌥ ⌅
# general form for calling object methods
# assume my_object refers to an object of some kind
my_object.function_name(arguments ...)⌃ ⇧
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Lists have methods as well, and the syntax for calling them is the same as in the example above.
Methods called like this will often modify the associated list in some way, as we’ll see with the
methods we look at next.

14.2.1 Adding Items to a List
We already know how to create lists that contain data items and how to modify those existing items,
but what if we want to add something new to a list without replacing anything that’s already there?
The list method append() does just that. It takes a single argument, which is the data item we want
to add to the list, and adds it to the back of the list. Here’s an example:⌥ ⌅
lucky_numbers = [1, 3, 33]
lucky_numbers.append (100)⌃ ⇧
After executing the statements above, the list lucky_numbers will consist of [1, 3, 33, 100].

With append(), we can add any kind of data to a list. It doesn’t have to match the type of the
data that’s already in the list. The following is perfectly valid:⌥ ⌅
count = [3, 2, 1]
count.append("BLAST OFF!")⌃ ⇧

14.2.2 Removing Items from a List
The remove() list method deletes a specific item by value from the list, no matter what index it
occupies:⌥ ⌅
rebels = ["Han", "Chewie", "Luke", "Leia", "C3PO"]
rebels.remove("Luke") # delete "Luke" from the list⌃ ⇧
After running the code above, the rebels list will consist of the items ["Han", "Chewie",
"Leia", "C3PO"]. The item "Luke" is no longer in the list and the entire list is shorter by
one data entry.

Be careful: If there are multiple occurrences of the specified item in the list, only the first one
(i.e. the one at the smallest offset location) will be removed. All the other occurrences remain! Also,
if you try to remove an item that doesn’t exist, Python will report an error.

14.2.3 Finding an Item’s Offset
You can retrieve the offset of an item in a list using the list’s index() method. This function returns
the offset of a given item as an integer, and like all functions that return values, we’ll probably want
to assign the returned value to a variable so we can do something useful with it later. Here’s an
example where we find the offset of an item and then change the item at that index:⌥ ⌅
names = ["Bert", "Ernie", "Kookie", "Big Bird"]

i = names.index("Kookie")

names[i] = "Cookie"⌃ ⇧
Just like with remove(), if the item exists more than once, index() will only report the offset

of the first occurrence of the item. And if the item does not exist, Python will report an error.
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14.2.4 Popping an Item from a List
The pop method returns the item at a specified list index and then deletes that item, all in one go!
Here’s an example:⌥ ⌅
names = ["Bert", "Ernie", "Cookie", "Big Bird"]

student = names.pop (0)

message = student + " dropped the class!"

print(message)

print(names)⌃ ⇧
The program above will print out Bert dropped the class, followed by the list, which will then
consist of just [“Ernie”, “Cookie”, “Big Bird”].

14.2.5 Sorting the Items in a List
If we want to re-order the existing items in a list, we can use the sort() method. This function will
re-arrange the list items so that they are in increasing (i.e. smallest to largest) order. This only works
if the items in a list are all comparable with one another.

Numbers are sorted in numeric order. Note that we can mix integers and floats; although they
are not precisely the same data type, they can still be compared using > and <, so sort() will work
with them.⌥ ⌅
numbers = [42.0, 7, 2.6, -17, -42]
numbers.sort()
print(numbers)⌃ ⇧
The program above will print out the list [-42, -17, 2.6, 7, 42.0].

Strings are sorted in lexicographic order (dictionary order):⌥ ⌅
words = ["what", "is", "dead", "may", "never", "die"]
words.sort()
print(words)⌃ ⇧
This will print out the list ["dead", "die", "is", "may", "never", "what"].

14.2.6 Copying Lists
Recall that the assignment operator, =, associates a variable name (also called an identifier) with a
piece of data. Suppose we did this:⌥ ⌅
x = 42
y = x⌃ ⇧
After executing the statements above, x and y are both associated with the value 42. But if we later
associate x with a different value, it doesn’t change the fact that y is still associated with the value
42.

But things are a bit different with lists. Firstly, if we do this:⌥ ⌅
x = [2, 4, 6, 8, 10]
y = x⌃ ⇧
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This is no different from the previous example – we have simply assigned two variable names to
refer to the same list. No problems so far. How about this:⌥ ⌅
x = [2, 4, 6, 8, 10]
y = x
x = [’A’, ’B’, ’C’]
print (y)⌃ ⇧
Which of the two lists will be printed by the code above? The answer is the first one: [2, 4, 6,
8, 10]. Initially, we made x refer to that first list, and then we made y refer to the same list. Then
we created a completely new list, which we associated with x. This didn’t change the fact that y
was still associated with the original list. So far, this is all the same behaviour as when we were just
using atomic data types.

Now how about this:⌥ ⌅
x = [2, 4, 6, 8, 10]
y = x
x[2] = 500
print(y)⌃ ⇧
What will be printed now? The answer is [2, 4, 500, 8, 10]. Yes, that’s right. Even though we
didn’t appear to change y, the list that gets printed has a 500 in the middle. That’s because x and y
are both referring to the same list. The statement y = x doesn’t create a copy of the list associated
with x before associating that list with y. It just associates y with the already-existing list that is
associated with x.

You might think that Python does things this way just to be mean to poor, novice students. But
actually, most of the time, it’s quite sensible behaviour. Recall that there is no limit to the size of a
list. A given list might have millions or even billions of data items. Making a copy of so much data
is a lot of work for the computer, work that we don’t really want the computer to have to do if all we
want is to be able to refer to a list by two different names.

The important thing to remember is that the assignment operator = does not make a copy of data.
It only associates a new name with that data. If you really want to make a copy of a list, you can do
it manually using a loop, like so:2⌥ ⌅
x = [2, 4, 6, 8, 10]
y = [ ]
for i in x:

y.append(i)⌃ ⇧
14.2.7 Concatenation

We saw, back in Section 8.2.3, that the + operator concatenates two strings. The + operator can
actually be used as a concatenation operator with any type of sequence, and it turns out lists are also
a sequence:

2Even this works only for lists that contain just atomic data! But properly copying more complicated lists is beyond
the scope of this class.
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⌥ ⌅
a = [1, 3, 5, 7, 9]
b = [2, 4, 6, 8, 10]
c = a + b
print(c)⌃ ⇧
The code above will print the list [1, 3, 5, 7, 9, 2, 4, 6, 8, 10]. Notice that the items are
not sorted or re-arranged in any way. All of the items in the list b were just tacked on to the end of
the items in a. The result is a completely new list consisting of both sets of items, which we then
associate with the name c.

14.3 Functions with Lists as Arguments
In the previous section, we looked at some list methods: special functions that we call by stating the
name of the list, followed by a period, followed by the function name. Python also has a number of
built-in functions that accept lists as arguments. These functions typically give back (via a return
value) some kind of information about a list. Here are some of those functions:

• max(L) returns the largest item in list L
• min(L) returns the smallest item in list L
• sum(L) returns the sum of the items in list L
• len(L) returns the number of items in list L

In fact, most of these built-in functions work on strings as well (recall that we said strings really are
a compound data type, even though we started using them right away with other atomic data types).

14.4 Iterating Over the Items of a List
We often want to perform some kind of computation for every element in a list. This is called
iterating over the list. Fortunately, again because lists are a sequence, we already know how to do
this, with for-loops!⌥ ⌅
classgrades = [50, 90, 30, 70]

# print out a comment based on each grade

for grade in classgrades:

if grade >= 80:

print("Excellent work!")

elif grade >= 50:

print("You pass!")

else:

print("You FAIL!")⌃ ⇧
This form of loop is excellent if we want to use each data item in the list in some kind of action or
computation.

We can also iterate over a list by iterating over its indices. This enables us to modify each
element of the list, since we can only modify a list item if we know its offset:
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⌥ ⌅
classgrades = [50, 90, 30, 70]

# give everyone a five point grade bonus

for i in range(len(classgrades )):

classgrades[i] = classgrades[i] + 5⌃ ⇧
After executing the above code, the list classgrades will be changed to [55, 95, 35, 75].
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15 — File I/O

Learning Objectives

After studying this chapter, a student should be able to:

• distinguish text files from binary files
• describe some common ways in which data may be organized in a text file
• author Python code to open and close files
• author Python code to read a text file one line at a time
• apply basic string processing to read numeric data from a text file containing numbers
• author Python code to write data to a text file

Up to this point, the only mechanisms we have used for data input into our programs are to
either code the data right into our program as literal data (this is sometimes called hard-coding the
data) or acquire it from the user through user actions (keyboard or mouse). In this chapter, we look
at how to obtain input data stored in files. Similarly, the only way we have seen our programs give
system feedback is by printing to the console or drawing on the canvas. In this chapter, we will also
look at how to write data to a file. We refer to these capabilities as file I/O — the I/O is short for
Input/Output, indicating that we’re using files to get data in and out of programs.

15.1 Data File Formats
The term file format refers to the way in which data is organized in a file. There are two main types
of file formats: text file formats and binary file formats.

Text file formats are readable by humans. You can open them in any text editor and see the
data inside and how it is organized. In text files, numbers are stored as strings of digits. A text file
containing data about cities and their average annual temperatures might look like this:
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⌥ ⌅
Saskatoon 9
Vancouver 14
Winnipeg 9
Toronto 13⌃ ⇧

Binary file formats are generally not readable by humans because the data is binary-encoded.
Such files generally do not contain any meaningful whitespace such as spaces or newlines and appear
as gibberish when viewed in a text editor. In a binary file format, numbers are stored in binary (base
2) format, in groups of 8-bits (a byte). A number might be comprised of the bits in one, two, or four
consecutive bytes. If we stored the temperature data, above, in a binary file, it might look something
like this when we load it into a text editor:

Binary files are typically more compact and use less disk space and are used frequently in commercial
applications and games. Since CMPT 140 is an introductory course, we will not be using any binary
file formats, only text file formats.

15.1.1 Common Text File Formats
In this section, we review two typical ways in which we might organize data in a text file.

List Files: One Data item Per Line
A list file has one data item per line, and usually each line contains the same type of data. List files
are very simple to read into a program since each line of the file contains one data item, and most
programming languages have built-in functions for reading one line from a file. An example of a list
file might be observations of temperature recorded over a single day:⌥ ⌅
-2.7
-1.8
0.3
2.4
3.5
5.9⌃ ⇧
Tabular Files: One Group of Related Data Items Per Line
A tabular file format has a fixed number of data items per line. We can think of such a file as a table,
because it will have a certain number of rows (lines) and a certain number of columns (data items
per line). Almost all spreadsheet programs can save spreadsheet data in this sort of format (usually
the file type is a .csv file).

The data items on a line may be different types, but often, each column of data is all of the same
type, that is, the n-th piece of data on each line is of the same type. Data items on a line might be
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separated by spaces, or another character, such as a comma. Whatever character is used to indicate
separation of data items on a line of the file is called the file’s delimiter. It delimits, or separates one
data item from the next. Here is an example of a tabular text file, delimited by commas, where each
line holds data about a student:⌥ ⌅
Big Bird ,Arts ,1112222 ,76
Cookie Monster ,Arts ,3334444 ,91
Snuffleuppagus ,Engineering ,5556666 ,49⌃ ⇧
Each line of this file holds the data for one student from a grading spreadsheet, and contains exactly
4 data items, separated by commas.

If our data items themselves do not contain spaces, we can use whitespace as a delimiter, which
makes the text file look more like a table. Here is an example of a tabular datafile that stores weather
observations taken every four hours for different weather stations on one specific day of the year
where each weather station is identified by a four-digit ID number:⌥ ⌅
1783 22 25 27 28 21 19
2214 -4 2 6 7 6 0
9934 -40 -32 -26 -21 -24 -32
5538 15 17 21 22 23 19⌃ ⇧
The first column contains the weather station ID number, and the remaining columns store tempera-
ture observations. Since observations are every four hours, there are six such columns.

Other Formats for Text Files
Any format you can think of is theoretically possible, but you might have to write custom code that
can process unconventional formats.

15.2 Files in Python

In Python, we interact with files on the disk via an abstraction. We can ask Python to return a
particular type of data called a file object that allows us to interact with a data file on disk. This
is called opening a file. We can open a file and obtain an object for that file using Python’s built-in
open() function. The open() function returns a file object that we can associate with a variable.
File objects, like the lists we saw in chapter 14, have methods, which we can then call to get access
to the data stored in the file.

Suppose the table of temperature data from the previous section is stored in a file called
temperatures.txt. Furthermore, assume that you’ve put this file in your Processing sketch
folder. You can access this folder by clicking on Sketch in the Processing menu bar and selecting
Show Sketch Folder . Under these conditions, we can open the file in Python like this:⌥ ⌅
f = open(’temperatures.txt’, ’r’)⌃ ⇧
The first argument to open() is a string containing the name of the file to be opened — this can be
any valid pathname. The second argument string is the mode. Here, we are using the file mode ’r’,
to indicate that we want to read from the file. Later, we’ll see how to write to files using the ’w’
mode.
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Now that f is associated with your file, we can do some nifty things with it to access the data in
that file. Before we move on, we must note that once a file is opened, it must be closed again when
you are done with it. We do that like this:⌥ ⌅
f.close()⌃ ⇧
Once you call f.close(), f can no longer be used to manipulate the file; trying to do so will result
in an error message. Note that close() is a method of the file object, and thus we call it using the
period-notation for calling methods that we first saw in chapter 14. The open() funciton, on the
other hand, is not a file method, because at the time we need to call open(), the file object doesn’t
exist yet. We can’t tell a file that doesn’t yet exist to open itself; that would be silly!

If you forget to close a file that was opened in read mode, usually nothing bad will happen,
although you really should always do it. If you forget to close a file that was opened in write mode,
it is possible that data that you wrote to the file will not actually be written, and that is very bad!

15.3 Reading Text Files
In this section, we’re going to learn how to read data from the simplest form of text files that we
described above: list files. This will actually be pretty easy: it turns out that we can iterate over the
lines of a file object just like we can iterate over the elements of a list. When we do this, each line in
the list file is treated as a single string.

15.3.1 Reading List Files
List files are pretty easy to deal with since each line of a file contains a single data item and, as we
have already mentioned, we can access each line of a file as a string easily.

Suppose we have a file called movietitles.txt which contains one movie title per line. We
can read the movie titles in the file and store them in a Python list like this:⌥ ⌅
# Open the file for reading
f = open(’movietitles.txt’, ’r’)

# create an empty list
titles = []

# iterate over each line of the file
for line in f:

# append the next line (movie title) to the list
titles.append(line)

# close the file
f.close()⌃ ⇧
If movietitles.txt contains the following data:⌥ ⌅
The Fellowship of the Ring
The Two Towers
The Return of the King⌃ ⇧
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Then the above code will result in titles referring to the list:⌥ ⌅
[’The Fellowship of the Ring\n’, ’The Two Towers\n’, ’The Return of the King\n’]⌃ ⇧

Hey, wait, that’s weird. What are those \n’s at the end of each string in the list? Those are
newline characters; they are invisible characters that mark the end of each line of a text file, and
therfore are included in the string that comprises a line of the file. In Python, \n represents the
newline character. Even though it is represented by two characters, \ and n, it is actually a single
character. It is represented this way so that we can see it because normally it is invisible since it is
not associated with any symbol on the keyboard.

Usually we don’t want newline characters at the end of our strings. We can remove them by
using a string method called rstrip(). If s refers to a string, then s.rstrip() returns a copy of
s that has all of the whitespace at the end of the string, including spaces and newlines, removed.
Revising our loop in the previous code to this:⌥ ⌅
f = open(’movietitles.txt’, ’r’)
titles = []
# iterate over each line of the file
for line in f:

# append the next line (movie title) to the list
titles.append(line.rstrip ())

f.close()⌃ ⇧
results in titles referring to the list:⌥ ⌅
[’The Fellowship of the Ring’, ’The Two Towers ’, ’The Return of the King’]⌃ ⇧

What if we have a list file of numbers? Remember that if we just iterate over the lines in a
file like we did above, every line is returned as string data. That’s probably not what we want for
numeric data. The solution is to use the built-in functions int() or float() to convert strings to
numbers. For example int(’42’) returns the integer 42, and float(’64.9’) returns the floating
point value 62.9. If you use int() or float() on a string that doesn’t represent a number of the
appropriate type, Python will respond with a ValueError. We could read the list file containing
temperature data at the beginning of Section 15.1.1 and store the data as a list of floats like this:⌥ ⌅
f = open(’temperatures.txt’, ’r’)
temps = []
for line in f:

temps.append(float(line))
f.close()⌃ ⇧

The program above would cause temps to refer to the list:⌥ ⌅
[-2.7, -1.8, 0.3, 2.4, 3.5, 5.9]⌃ ⇧

15.3.2 Reading Tabular Files
Reading tabular files is almost the same as reading list files. The main difference is that since we
initially access each line of the data file as a single string, we need an extra step to separate the
data items on each line. Remember that in a tabular file, the data items on each line are separated
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by a delimiter. Strings have a split() method which returns a list of individual strings that occur
between a specific delimiter character. For example, the string ’The king in the north.’ can
be separated into individual words like this:⌥ ⌅
my_string = ’The king in the north.’
words = my_string.split()⌃ ⇧
This results in words referring to the list:⌥ ⌅
[’The’, ’king’, ’in’, ’the’, ’north.’]⌃ ⇧
If we want to split a string based on a delimiter other than whitespace, we just pass the desired
delimiter to split as an argument. Here’s how we can obtain a list of strings from a string delimited
by commas:⌥ ⌅
my_string = ’42,38,27,99,55’
numbers = my_string.split(’,’)⌃ ⇧
This results in numbers referring to the list⌥ ⌅
[’42’, ’38’, ’27’, ’99’, ’55’]⌃ ⇧
They’re still strings, but we could later use a for-loop to convert the contents of the list to integers
using the int() function.

We can obtain the lines of a tabular data file in the same way that we obtained lines for list files,
but then we have to use split to divide up each line into its individual data items. We might then
need to convert these individual data items into integers or floats. Let’s walk through an example of
how to do this.

Suppose we have a data file of student grades called students.txt that looks like this:⌥ ⌅
Ernie 40 55 48 60 72
Bert 99 99 99 99 99
Elmo 65 72 0 75 80⌃ ⇧
The first column of the file is the student’s name, the next five columns are their grades (out of 100)
for five different assignments. Suppose we wanted to read in this file, calculate an average grade for
each student and print out that grade. Here’s what the program to do that looks like:⌥ ⌅
data = open(’students.txt’, ’r’)
for line in data:

grades = line.split()
name = grades.pop(0)
avg = 0.0
for g in grades:

avg = avg + float(g)
avg = avg / len(grades)
print(name)
print(‘: ‘)
print(avg)

data.close()⌃ ⇧
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The program starts by opening the file and uses a for-loop to examine each line in the file, which is
so far just like we did with list files. Then, we use the split() function to put all the items from the
line into a list. We know that the very first item on each line is the student’s name, so we pop() that
off of the list (recall the pop() function from Chapter 14) and associate it with the variable name.
Then, we use a for-loop to access each of the remaining items in the list, using the float() function
to convert them to floating point numbers as we add them to a variable called avg. We need to do
this, since split() just breaks up a string into a list of strings. Finally, once we’re done, we divide
avg by the number of items in the list of grades, and then print the name and the avg to the console.

15.4 Writing Text Files
So far, whenever we’ve wanted to display textual output to a human user, we’ve displayed it via the
console (using print()) or drawn it onto the Processing canvas (using text()). It turns out we can
also have the program send text output to a file. When we do this, the user doesn’t see the text right
away; they’ll have to go and find the resulting file on their computer and open it using a text editor in
order to see the results.

To write to a file, you have to open it in write mode:⌥ ⌅
f = open(’file_to_write.txt’, ’w’)⌃ ⇧
Be careful! If a file is opened in write mode, and a file of the same name already exists, then the
existing file is destroyed; a new file of the same name replaces it. If the file opened for writing does
not exist yet, it is created.

It is possible to write data at the end of an existing file without destroying it. To do so, open the
file in append mode:⌥ ⌅
f = open(’file_to_write.txt’, ’a’)⌃ ⇧

15.4.1 The write() method
Writing data to text files is very similar to printing to the console. First you have to open a file in
write or append mode. Then, instead of using the print function, you use the write() method,
which is a method of file objects. If the variable f refers to a file object, and the file was opened in
write mode, then the code⌥ ⌅
f.write(string )⌃ ⇧
writes the the string string to the file. The write method does not write a newline character to the
file unless the string given as an argument includes one. Note that this behaviour is different from
the print function which, by default, always outputs a newline after printing its argument.

15.4.2 Writing List Files
List files can be written by writing each data item followed by a new line. If we have a list of strings,
we can write those strings, one per line, to a file called shoppinglist.txt like this:
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⌥ ⌅
ingredients = [’eggs’, ’milk’, ’flour’, ’yeast’]
f = open(’shoppinglist.txt’, ’w’)
for i in ingredients:

f.write(i + ’\n’)
f.close()⌃ ⇧
This code iterates over each item in the list ingredients, and writes it to the file. Note how we
concatenate each item in the list with a newline before writing it so that each string appears on its
own line. The resulting file looks like this:⌥ ⌅
eggs
milk
flour
yeast⌃ ⇧
If the items we are writing are not strings, we have to convert them to strings because the write
method can only write strings to files. We can do this using the built-in str() function which
converts its argument to a string, if possible. Here’s how we would write a list of integers to a file,
one per line:⌥ ⌅
ingredients = [99, 88, 77, 66, 55]
f = open(’numbers.txt’, ’w’)
for i in ingredients:

f.write(str(i) + ’\n’)
f.close()⌃ ⇧
Note how the integer i is converted to a string prior to concatenating it with a newline.

15.4.3 Writing Tabular Files
To write a tabular file, a typical strategy is to construct a string consisting of one line of the tabular
file to be written, and then write it. This is done by combining the data items to appear on that line
into a single string, separated by the appropriate delimiter. Just as strings have a split() method
for breaking them up, there’s also a join() method for putting them together. It works in a bit of a
funny way though, at least at first glance. The string on which we call the join(), again using the
period-notation we use for method calls, is the separator that we want to use, and items that we
want to join together are provided as a list argument to the method call.

Suppose we have a list of numbers called grades which should all appear on one line of a tabular
file, separated by commas. We can construct the appropriate string to write to the file like this:⌥ ⌅
grades = [42, 24, 87, 21, 76]
# first we have to convert numbers to strings
grades_string = []
for g in grades:

grades_string.append(str(g))
# now join grades together using commas
line = ’,’.join(grades_string)
print(line)⌃ ⇧
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This produces the output:⌥ ⌅
42,24,87,21,76⌃ ⇧
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16 — Dictionaries

Learning Objectives

After studying this chapter, a student should be able to:

• describe what a dictionary is
• distinguish dictionaries from lists
• access and manipulate data stored in dictionaries
• write Python programs that use dictionaries

16.1 Dictionaries

A dictionary associates pairs of data items with one another. The first item in such a pair is called a
key and the second item is called the value. A dictionary stores a collection of these key-value pairs.
Dictionaries allow you to look values up by their key.

Dictionaries are named as such because in some ways they are similar to the physical dictionaries
we use to look up the meaning of words. In a physical dictionary, we look up definitions based on
the word we are interested in. It doesn’t really matter to us where that word is in the dictionary so
long as we can find it when we want it. With physical dictionaries, it is almost never useful to ask
questions like “what’s the definition of the 356th word in the dictionary?” We usually know the word
we want to look up, and we just need to get the value (definition) associated with that word.

Of course, in Python, dictionaries can be used for any kind of data look-up, not just looking up
word definitions. Suppose we had a dictionary called friends containing key-value pairs where the
keys are people’s names, and the value associated with each key is that person’s email address. We
could then find out someone’s email address by querying the dictionary for the value associated
with a person’s name. If there is a key-value pair in the dictionary friends whose key is ’John
Smith’, the value of friends[’John Smith’] would be the email address of John Smith. The
keys of a dictionary must be unique — the same key cannot be associated with more than one value.
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However, the values need not be unique — different keys can be associated with the same value.
Thus, there can only be one ’John Smith’ key in friends, but another friend with the key’Jane
Smith’ may have the same e-mail address as John Smith.

Over the next few sections, we’ll see how to create a dictionary and look up the items it contains.

16.1.1 Creating a Dictionary
Dictionaries can be created in a few different ways. They can be literally written out like a list,
except dictionaries are enclosed in curly braces rather than square brackets. We can construct an
empty dictionary using an empty pair of curly braces:⌥ ⌅
# associate the variable name ’friends ’ with an empty dictionary
friends = {}⌃ ⇧
We can create a non-empty dictionary by writing a comma-separated listing of key-value pairs within
a pair of curly braces. Each key-value must consist of the key, followed by a colon, followed by the
value. The following defines a dictionary with four key-item pairs; each pair is a name and an email
address:⌥ ⌅
# associate ’friends ’ with some known key -value pairs
friends = { ’Bilbo Baggins ’ : ’burglar1@theshire.net’,

’Sauron the Great’ : ’greateye@mordor.gov’,
’Gandalf the White’: ’whitewizard@valinor.org’,
’Saruman ’ : ’entkiller@isengard.gov’ }⌃ ⇧

We can have line breaks and line indentations between key-value pairings within the curly braces
because Python ignores whitespace within curly braces (the same applies to square brackets enclosing
lists as well!).

Dictionary keys can be of any of the basic data types we’ve seen so far: integers, floats, and
strings. However, you are not allowed to use lists or other dictionaries as keys.

Dictionary values, on the other hand, may be of any type, including lists, or even another
dictionary!

16.1.2 Looking Up Values by Key
Looking up values by key in a dictionary works very much like indexing a list. You write the variable
name that refers to the dictionary, then a pair of square brackets enclosing the key whose value you
want to look up. You read that correctly, square brackets. So even though we use curly brackets to
create or initialize a dictionary, we still use square brackets to access individual items, just like with
a list.⌥ ⌅
print(friends[’Bilbo Baggins ’])

# this will print burglar1@theshire.net

print(friends[’Sauron the Great ’])

# this will print greateye@mordor.gov⌃ ⇧
If you try to look up a key that is not in the dictionary, you get a KeyError. This is similar to when
you try to index a list at a position that doesn’t exist. Again, the fact that Python gives you an error
here is very useful! Not all programming languages are so helpful.
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16.1.3 Adding and Modifying Key-Value Pairs
You can add a key-value pair, or modify the value associated with a key using the same syntax as a
lookup in conjunction with the assignment operator.⌥ ⌅
# add Haldir ’s email address to the dictionary
friends[’Haldir ’] = ’smug_elf_531@lothlorien.net’

# update Saruman ’s email address
# (This is an update since key ’Saruman ’ is already in
# the dictionary)
friends[’Saruman ’] = ’bag_end_squatter@theshire.net’⌃ ⇧
Adding and modifying keys look very much the same. If the key already exists in the dictionary, the
existing key becomes associated with the new value on the right of the assignment operator. This was
the case for ‘Saruman’ in the example above, which was already a key in our dictionary and had
the previous value of ‘entkiller@isengard.gov”. If the key does NOT exist in the dictionary, it
is added and becomes associated with the value to the right of the assignment operator, like in the
case of the key ‘Haldir’ in the example above.

16.1.4 Removing Key-Value Pairs
Dictionaries have a pop() method that works more or less the same as th pop() method that we saw
for lists.⌥ ⌅
# remove the pair with key ’Saruman ’ from the dictionary ,
# after associating its value with the name value
value = friends.pop(’Saruman ’)⌃ ⇧
Dictionaries also have a method called clear() that will remove everything from the dictionary.⌥ ⌅
# remove everyone ’s email address from the dictionary
friends.clear()⌃ ⇧

16.1.5 Checking if a Dictionary has a Key
The in operator, which we have seen many times before, can be used to determine if a dictionary
has a particular key.⌥ ⌅
if ’Sauron the Great ’ in friends:

print(’Yeah , I am friends with Sauron ’)

else:

print(’Sauron is not my friend. I hope his tower collapses.’)⌃ ⇧
16.1.6 Iterating over a Dictionary’s Keys

You can iterate over all keys in a dictionary, and do something with each key’s corresponding value
using a for-loop.
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⌥ ⌅
spam_addresses = []

for k in friends:

# add all my friends ’ email addresses to list of spam recipients

spam_addresses.append(friends[k])⌃ ⇧
Note that this is a little different than using a for-loop to iterate over a list. With a list, the for-loop
gives us the values that are stored in the list, one at a time. With a dictionary, the for-loop gives us
the keys for each key-value pair in the dictionary. We still have to use each key to get the value
associated with a key.

It is important to note that there is no guarantee on the order in which each key of friends is
processed in such a loop. Real physical dictionaries are organized alphabetically, but that’s only so
that humans can quickly and easily find what they’re looking for. In Python, the computer takes
care of doing the look-up (using techniques that are indeed fascinating, but beyond the scope of this
course), so the organization is not necessarily alphabetical at all.

16.2 Dictionaries vs. Lists
Dictionaries are similar to lists in the following ways:

• both are containers that hold a collection of data items;
• both allow storage of data items of different types; and
• both allow you to look up individual data items.

Dictionaries are different from lists in the following ways:

• there is no ordering of the key-value pairs stored in a dictionary, whereas items in a list are in
a specific order; and

• values in a dictionary are looked up by their key, whereas items in a list are looked up by their
integer index (position in the ordering).

16.3 Common Uses of Dictionaries
In this section, we will discuss some common data storage patterns that can be realized with
dictionaries.

16.3.1 Dictionaries as Mappings
Dictionaries, by definition, associate keys with values. Such an association can be viewed as a
mapping that translates one type of data into another. For example, we could use a dictionary to map
animal species names to their taxonomical class:⌥ ⌅
species_to_class_mapping = {

’red squirrel ’: ’Mammal ’,
’komodo dragon ’: ’Reptile ’,
’chimpanzee ’: ’Mammal ’,
’snowy owl’: ’Bird’,
’green cheeked conure ’ : ’Bird’,
’rainbow trout’ : ’Fish’

}⌃ ⇧
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Now we can use this mapping to look up what basic type of animal a certain species is.
When a dictionary is used to store a mapping, we can think of the dictionary as a collection of

many individual data items, much like a list. But we can also think of dictionaries in other ways as
well, as we will see next.

16.3.2 Dictionaries as Records
Another common use of a Python dictionary is to represent a record. A record is a group of related
named data elements, for example, the spaces that get filled out in a form, such as name, address,
phone number, etc. Note that the term record is not specific to a particular programming language
but rather is a name for a data organization paradigm. The main purpose of a record is to store, as a
group, several pieces of data that can be accessed via named fields, rather than through a numeric
index.

Records are defined by the names of the data items, and the type of the data items. If we were
studying the history of pirates, we might want to define a record that has five data items: given name,
family name, pirate name, birth year, and death year. Such a record might be used to store and group
together all of the data we want to collect about one pirate. An example of such a record might be:

given_name Edward
family_name Teach
pirate_name Blackbeard
birth_year 1680
death_year 1718

Most programming languages support some way of defining and handling records. In Python,
records are stored as dictionaries. The names of the data items in a record are a dictionary’s keys,
and a dictionary’s values are the values associated with each data item. The record shown above
would be stored in Python as the following dictionary:⌥ ⌅
pirate1 = { ’given_name ’: ’Edward ’,

’family_name ’: ’Teach’,
’pirate_name ’: ’Blackbeard ’,
’birth_year ’: 1680,
’death_year ’: 1718 }⌃ ⇧

Now we can look up data about a particular pirate based on the name(s) of the field(s) that we’re
interested in. For example, given the above dictionary, we could compute Blackbeard’s age when he
died:⌥ ⌅
pirate_age = pirate1[’death_year ’] - pirate1[’birth_year ’]⌃ ⇧

When a dictionary is used as a record, we can think of the entire dictionary as a single data item
with several properties. In the example above, we used one dictionary to represent all the relevant
information for one pirate. If we wanted to store data for multiple pirates, we would need multiple
dictionaries - one per pirate.
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